{"title":"Melamine-based biomass-containing P/N synergistic flame retardants confer superb flame retardancy and toughness to epoxy resins","authors":"Penglun Zheng, Haihan Zhao, Yawei Meng, Junwei Li, Qizhao You, Quanyi Liu","doi":"10.1016/j.porgcoat.2024.108927","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxy resin (EPs) coatings for aircraft need to have good flame retardant properties and toughness. On the other hand, to meet the needs of sustainable development, EPs also have high environmental friendliness and low cost requirements. In light of this, a one-pot approach was used to create a bio-based phosphorus‑nitrogen synergistic flame retardant (MDV) employing DOPO, vanillin, and MA as raw materials. The results showed that MDV can give EP superb flame retardancy and toughness. With the addition of 3 wt% MDV, the tensile and flexural strengths of EP composites increased by 13.6 % and 14.5 %, respectively, and the impact strength increased from 13.9 KJ/m<sup>2</sup> to 43.1 KJ/m<sup>2</sup>. The excellent toughness enhancement comes from the fact that the structure of MDV itself can preferentially consume and dissipate energy when counteracting external impacts. In addition, MDV/EP also has excellent flame retardant properties, showing good self-extinguishing capability off fire in tests. Compared with pure EP, the total heat release (THR) and peak heat release rate (PHRR) of 7-MDV/EP composites were reduced by 45.3 % and 64.5 %, respectively. Mechanistic analyzes showed that the segregation of the condensed phase and the gas-phase flame-retardant effect both originated from the P/N synergistic effect, which was the source of the excellent flame-retardant effect of MDV/EP.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"198 ","pages":"Article 108927"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024007197","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxy resin (EPs) coatings for aircraft need to have good flame retardant properties and toughness. On the other hand, to meet the needs of sustainable development, EPs also have high environmental friendliness and low cost requirements. In light of this, a one-pot approach was used to create a bio-based phosphorus‑nitrogen synergistic flame retardant (MDV) employing DOPO, vanillin, and MA as raw materials. The results showed that MDV can give EP superb flame retardancy and toughness. With the addition of 3 wt% MDV, the tensile and flexural strengths of EP composites increased by 13.6 % and 14.5 %, respectively, and the impact strength increased from 13.9 KJ/m2 to 43.1 KJ/m2. The excellent toughness enhancement comes from the fact that the structure of MDV itself can preferentially consume and dissipate energy when counteracting external impacts. In addition, MDV/EP also has excellent flame retardant properties, showing good self-extinguishing capability off fire in tests. Compared with pure EP, the total heat release (THR) and peak heat release rate (PHRR) of 7-MDV/EP composites were reduced by 45.3 % and 64.5 %, respectively. Mechanistic analyzes showed that the segregation of the condensed phase and the gas-phase flame-retardant effect both originated from the P/N synergistic effect, which was the source of the excellent flame-retardant effect of MDV/EP.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.