Borides and sulfide quantum dots co-enhanced the electrochemical property of metal organic framework/Ni3S2 composites for high-performance supercapacitors

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-11-23 DOI:10.1016/j.fuel.2024.133805
Shuai Wu , Debin Cai , Hong Wang , Rui Zhou , Li Guo , Yanzhong Wang
{"title":"Borides and sulfide quantum dots co-enhanced the electrochemical property of metal organic framework/Ni3S2 composites for high-performance supercapacitors","authors":"Shuai Wu ,&nbsp;Debin Cai ,&nbsp;Hong Wang ,&nbsp;Rui Zhou ,&nbsp;Li Guo ,&nbsp;Yanzhong Wang","doi":"10.1016/j.fuel.2024.133805","DOIUrl":null,"url":null,"abstract":"<div><div>Metal organic frameworks (MOFs) as supercapacitor electrode materials still faces low electronic conductivity and poor structural stability. Herein, metal sulfides@NiCo-MOF composites were first synthesized via one-pot solvothermal method and then controllably boronized by using NaBH<sub>4</sub> to modulate its morphology and electronic structure. The morphology of metal sulfides@NiCo-MOFs is transformed from the original columnar structure into ultrathin nanoflakes after boronization, and B also optimizes the number of oxygen vacancies. Benefiting from the formation of Co-B-Ni bonds and abundant active sites, the as-prepared borides and sulfides quantum dots@NiCo-MOF/Ni<sub>3</sub>S<sub>2</sub>-2 (BSQD@MOF/S-2) composites exhibit high specific capacitance of 4230.7F g<sup>−1</sup> at 1 A g<sup>−1</sup>. Additionally, the fabricated ASC device achieves an energy density of 69.2 Wh kg<sup>−1</sup> at 410.6 W kg<sup>−1</sup>. The density functional theory (DFT) calculations show that boron forms p-d hybrid orbitals with transition metals after filling oxygen vacancies, which can improve the electronic conductivity and favorite the adsorption capacitance. This paper proposes a mild method to optimize the morphology and electronic structure of MOFs-based materials for high-performance supercapacitors.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133805"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124029545","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Metal organic frameworks (MOFs) as supercapacitor electrode materials still faces low electronic conductivity and poor structural stability. Herein, metal sulfides@NiCo-MOF composites were first synthesized via one-pot solvothermal method and then controllably boronized by using NaBH4 to modulate its morphology and electronic structure. The morphology of metal sulfides@NiCo-MOFs is transformed from the original columnar structure into ultrathin nanoflakes after boronization, and B also optimizes the number of oxygen vacancies. Benefiting from the formation of Co-B-Ni bonds and abundant active sites, the as-prepared borides and sulfides quantum dots@NiCo-MOF/Ni3S2-2 (BSQD@MOF/S-2) composites exhibit high specific capacitance of 4230.7F g−1 at 1 A g−1. Additionally, the fabricated ASC device achieves an energy density of 69.2 Wh kg−1 at 410.6 W kg−1. The density functional theory (DFT) calculations show that boron forms p-d hybrid orbitals with transition metals after filling oxygen vacancies, which can improve the electronic conductivity and favorite the adsorption capacitance. This paper proposes a mild method to optimize the morphology and electronic structure of MOFs-based materials for high-performance supercapacitors.

Abstract Image

硼化物和硫化物量子点共同增强了用于高性能超级电容器的金属有机框架/Ni3S2 复合材料的电化学性能
金属有机框架(MOFs)作为超级电容器电极材料仍然面临着电子电导率低、结构稳定性差等问题。本文首先通过一锅溶热法合成了金属硫化物@NiCo-MOF复合材料,然后利用NaBH4对其进行可控硼化,以调节其形貌和电子结构。硼化后,金属硫化物@NiCo-MOFs的形貌由原来的柱状结构转变为超薄纳米片状结构,同时硼化还优化了氧空位的数量。得益于 Co-B-Ni 键的形成和丰富的活性位点,制备的硼化物和硫化物量子点@NiCo-MOF/Ni3S2-2(BSQD@MOF/S-2)复合材料在 1 A g-1 的条件下表现出 4230.7F g-1 的高比电容。此外,所制造的 ASC 器件在 410.6 W kg-1 的条件下实现了 69.2 Wh kg-1 的能量密度。密度泛函理论(DFT)计算表明,硼在填充氧空位后与过渡金属形成了 p-d 杂化轨道,从而提高了电子传导性和吸附电容。本文提出了一种温和的方法来优化基于 MOFs 的高性能超级电容器材料的形态和电子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信