Daily forecasting of tourism demand: An ST-LSTM model with social network service co-occurrence similarity

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qinfang Luo , Shun Cai , Ning Lv , Xin Fu
{"title":"Daily forecasting of tourism demand: An ST-LSTM model with social network service co-occurrence similarity","authors":"Qinfang Luo ,&nbsp;Shun Cai ,&nbsp;Ning Lv ,&nbsp;Xin Fu","doi":"10.1016/j.im.2024.104056","DOIUrl":null,"url":null,"abstract":"<div><div>In the digital era, social network service (SNS) significantly influences travel behavior. Understanding SNS spillover effects is crucial for accurate tourism demand prediction. This study introduces SNS co-occurrence similarity (SNS-COS) to capture the spillover effects and demonstrates a comprehensive tourism demand forecasting framework that combines econometric and AI models to handle spatial and temporal data. By classifying attractions into different ranks, it effectively captures varying spillover effects. Empirical verification shows significant improvements in forecasting accuracy, especially for low-ranked attractions, providing valuable insights for enhancing tourism demand forecasting and informed decision-making in the tourism industry.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 1","pages":"Article 104056"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001381","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the digital era, social network service (SNS) significantly influences travel behavior. Understanding SNS spillover effects is crucial for accurate tourism demand prediction. This study introduces SNS co-occurrence similarity (SNS-COS) to capture the spillover effects and demonstrates a comprehensive tourism demand forecasting framework that combines econometric and AI models to handle spatial and temporal data. By classifying attractions into different ranks, it effectively captures varying spillover effects. Empirical verification shows significant improvements in forecasting accuracy, especially for low-ranked attractions, providing valuable insights for enhancing tourism demand forecasting and informed decision-making in the tourism industry.
旅游需求的每日预测:具有社会网络服务共现相似性的 ST-LSTM 模型
在数字时代,社交网络服务(SNS)极大地影响着人们的旅游行为。了解 SNS 的溢出效应对于准确预测旅游需求至关重要。本研究引入了 SNS 共现相似性(SNS-COS)来捕捉溢出效应,并展示了一个结合计量经济学和人工智能模型的综合旅游需求预测框架,以处理空间和时间数据。通过将景点划分为不同等级,它能有效捕捉不同的溢出效应。实证验证表明,预测准确率有了显著提高,尤其是对低等级景点的预测准确率,这为加强旅游需求预测和旅游业的知情决策提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信