Exome sequencing and molecular dynamics simulation characterizes a compound heterozygous GCDH missense variant leading to glutaric aciduria type 1 in a paediatric patient from Jammu and Kashmir, India
Yaser Rafiq Mir , Ashish Kumar Agrahari , Abhishek Choudhary , Asima Hassan , Atul Kumar Taneja , Juan C. Zenteno , Luis Montes-Almanza , Marta Rusmini , Kazunori Namba , Aaqib Zaffar Banday , Raja A.H. Kuchay
{"title":"Exome sequencing and molecular dynamics simulation characterizes a compound heterozygous GCDH missense variant leading to glutaric aciduria type 1 in a paediatric patient from Jammu and Kashmir, India","authors":"Yaser Rafiq Mir , Ashish Kumar Agrahari , Abhishek Choudhary , Asima Hassan , Atul Kumar Taneja , Juan C. Zenteno , Luis Montes-Almanza , Marta Rusmini , Kazunori Namba , Aaqib Zaffar Banday , Raja A.H. Kuchay","doi":"10.1016/j.genrep.2024.102092","DOIUrl":null,"url":null,"abstract":"<div><div>Glutaric Aciduria Type 1 (GA1) is a rare autosomal recessive metabolic disorder caused by mutations in the gene GCDH, leading to deficiency of the enzyme glutarylCoA dehydrogenase. This study reports a case of GA1 in a 3-year-old male from Jammu and Kashmir, India, presenting with a compound heterozygous mutation in the GCDH. Whole exome sequencing (WES) and molecular dynamics simulations were employed to investigate the genetic and structural basis of GA1 in the proband. Clinical evaluation, MRI, and tandem mass spectrometry were conducted to assess the patient's metabolic profile and neurological status. The pathogenic impact of the identified mutations (c.881G > A; p.Arg294Gln and c.481C > T; p.Arg161Trp) was analyzed using computational tools and molecular dynamics simulations. Molecular dynamics simulations indicated significant dynamic changes in the mutant protein structures. The R161W mutation increased flexibility, while the R294Q mutation caused notable conformational instability at the catalytic site, reducing its normal protein function and stability. The RMSD, RMSF, and SASA analyses supported these findings, correlating well with experimental observations. The molecular dynamics simulations provided valuable insights into the structural implications of the R161W and R294Q mutations and might contribute to a deeper understanding of GA1 molecular mechanisms.</div></div>","PeriodicalId":12673,"journal":{"name":"Gene Reports","volume":"38 ","pages":"Article 102092"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452014424002152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Glutaric Aciduria Type 1 (GA1) is a rare autosomal recessive metabolic disorder caused by mutations in the gene GCDH, leading to deficiency of the enzyme glutarylCoA dehydrogenase. This study reports a case of GA1 in a 3-year-old male from Jammu and Kashmir, India, presenting with a compound heterozygous mutation in the GCDH. Whole exome sequencing (WES) and molecular dynamics simulations were employed to investigate the genetic and structural basis of GA1 in the proband. Clinical evaluation, MRI, and tandem mass spectrometry were conducted to assess the patient's metabolic profile and neurological status. The pathogenic impact of the identified mutations (c.881G > A; p.Arg294Gln and c.481C > T; p.Arg161Trp) was analyzed using computational tools and molecular dynamics simulations. Molecular dynamics simulations indicated significant dynamic changes in the mutant protein structures. The R161W mutation increased flexibility, while the R294Q mutation caused notable conformational instability at the catalytic site, reducing its normal protein function and stability. The RMSD, RMSF, and SASA analyses supported these findings, correlating well with experimental observations. The molecular dynamics simulations provided valuable insights into the structural implications of the R161W and R294Q mutations and might contribute to a deeper understanding of GA1 molecular mechanisms.
Gene ReportsBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
7.70%
发文量
246
审稿时长
49 days
期刊介绍:
Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Gene Reports strives to be a very diverse journal and topics in all fields will be considered for publication. Although not limited to the following, some general topics include: DNA Organization, Replication & Evolution -Focus on genomic DNA (chromosomal organization, comparative genomics, DNA replication, DNA repair, mobile DNA, mitochondrial DNA, chloroplast DNA). Expression & Function - Focus on functional RNAs (microRNAs, tRNAs, rRNAs, mRNA splicing, alternative polyadenylation) Regulation - Focus on processes that mediate gene-read out (epigenetics, chromatin, histone code, transcription, translation, protein degradation). Cell Signaling - Focus on mechanisms that control information flow into the nucleus to control gene expression (kinase and phosphatase pathways controlled by extra-cellular ligands, Wnt, Notch, TGFbeta/BMPs, FGFs, IGFs etc.) Profiling of gene expression and genetic variation - Focus on high throughput approaches (e.g., DeepSeq, ChIP-Seq, Affymetrix microarrays, proteomics) that define gene regulatory circuitry, molecular pathways and protein/protein networks. Genetics - Focus on development in model organisms (e.g., mouse, frog, fruit fly, worm), human genetic variation, population genetics, as well as agricultural and veterinary genetics. Molecular Pathology & Regenerative Medicine - Focus on the deregulation of molecular processes in human diseases and mechanisms supporting regeneration of tissues through pluripotent or multipotent stem cells.