Philip J. Heron , Juliane Dannberg , Rene Gassmöller , Grace E. Shephard , Jeroen van Hunen , Russell N. Pysklywec
{"title":"The impact of Pangean subducted oceans on mantle dynamics: Passive piles and the positioning of deep mantle plumes","authors":"Philip J. Heron , Juliane Dannberg , Rene Gassmöller , Grace E. Shephard , Jeroen van Hunen , Russell N. Pysklywec","doi":"10.1016/j.gr.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic imaging of the Earth’s interior reveals plumes originating from relatively hot regions of the lowermost mantle, surrounded by cooler material thought to be remnants of ancient subducted oceans. Currently, there is no clear consensus on the internal composition of the hot regions, with end-member conditions being that they are thermo-chemical in nature or purely thermal plume clusters. Previous modelling studies have shown a range of scenarios where deep chemical heterogenities or purely thermal anomalies are essential in developing appropriate present-day mantle dynamics. Here, we add to this discussion by quantifying the location of rising mantle plumes using numerical 3-D global mantle convection models constrained by 410 million years of palaeo-ocean evolution (encompassing the formation and breakup of supercontinent Pangea). Our study compares numerical simulations with purely thermal convection to those where a deep thermo-chemical anomaly is laterally mobile. The results show that models both with and without large-scale chemical heterogeneities can generate appropriate present-day plume dynamics, which illustrate the power of sinking ocean plates to stir mantle ow and control the thermal evolution of the mantle. Our models add to the discussion on bottom-up and top-down mantle dynamics, indicating the difficulty in unravelling the processes using numerical models alone.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"138 ","pages":"Pages 168-185"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24002910","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic imaging of the Earth’s interior reveals plumes originating from relatively hot regions of the lowermost mantle, surrounded by cooler material thought to be remnants of ancient subducted oceans. Currently, there is no clear consensus on the internal composition of the hot regions, with end-member conditions being that they are thermo-chemical in nature or purely thermal plume clusters. Previous modelling studies have shown a range of scenarios where deep chemical heterogenities or purely thermal anomalies are essential in developing appropriate present-day mantle dynamics. Here, we add to this discussion by quantifying the location of rising mantle plumes using numerical 3-D global mantle convection models constrained by 410 million years of palaeo-ocean evolution (encompassing the formation and breakup of supercontinent Pangea). Our study compares numerical simulations with purely thermal convection to those where a deep thermo-chemical anomaly is laterally mobile. The results show that models both with and without large-scale chemical heterogeneities can generate appropriate present-day plume dynamics, which illustrate the power of sinking ocean plates to stir mantle ow and control the thermal evolution of the mantle. Our models add to the discussion on bottom-up and top-down mantle dynamics, indicating the difficulty in unravelling the processes using numerical models alone.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.