{"title":"Research on discrete element parameter calibration of ore particles based on Tavares breakage model in a SAG mill","authors":"Ming Bao, Wanrong Wu, Guangtian Tian, Binghui Qiu","doi":"10.1016/j.partic.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately simulating the crushing process of ore particles in a semi-autogenous grinding mill (SAG mill) is quite challenging. This study utilizes the discrete element method (DEM) to construct a breakage model for ore particles. Calibration of the discrete element basic parameters and Tavares breakage model parameters is conducted based on angle of repose (<em>AoR</em>) tests and single-particle impact tests. 3D scanning is employed to capture the morphology of the ore for particle modeling. On this basis, a discrete element breakage model for ore particles is built for single-particle impact simulations and validated through testing to determine the calibrated model parameters. The results indicate that the <em>AoR</em> angles and stacking shapes from the simulation and tests are highly similar, with a relative error of about 0.19%. The similarity in crushing outcomes and quantitative values between single-particle impact simulations and tests preliminary validates the reliability of the calibration method and the applicability of the Tavares breakage model, successfully determining a group of model parameters suitable for simulating ore particle crushing processes. This study lays the groundwork for utilizing DEM to simulate the visualization of ore particle crushing.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 44-56"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002177","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately simulating the crushing process of ore particles in a semi-autogenous grinding mill (SAG mill) is quite challenging. This study utilizes the discrete element method (DEM) to construct a breakage model for ore particles. Calibration of the discrete element basic parameters and Tavares breakage model parameters is conducted based on angle of repose (AoR) tests and single-particle impact tests. 3D scanning is employed to capture the morphology of the ore for particle modeling. On this basis, a discrete element breakage model for ore particles is built for single-particle impact simulations and validated through testing to determine the calibrated model parameters. The results indicate that the AoR angles and stacking shapes from the simulation and tests are highly similar, with a relative error of about 0.19%. The similarity in crushing outcomes and quantitative values between single-particle impact simulations and tests preliminary validates the reliability of the calibration method and the applicability of the Tavares breakage model, successfully determining a group of model parameters suitable for simulating ore particle crushing processes. This study lays the groundwork for utilizing DEM to simulate the visualization of ore particle crushing.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.