{"title":"Sr-Mg co-doped Hardystonite/Polycaprolactone electrospun scaffolds: Fabrication and characterization for enhanced bone regeneration","authors":"Pegah Dehghanpour, Rahmatollah Emadi, Hamidreza Salimijazi","doi":"10.1016/j.ceramint.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>The production of scaffolds is a primary objective in tissue engineering for treating bone defects and diseases. The electrospinning process offers a promising technique to create structures resembling the extracellular matrix. Artificial polymeric grafts, such as poly(caprolactone) (PCL), often face issues of low strength and degradation. To overcome these limitations, we introduce ceramic reinforcing particles, specifically hardystonite (Ca<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>), known for its benefits in tissue regeneration. Considering the undeniable role of strontium and magnesium in bone regeneration, the aim of this study was to investigate and compare produced scaffolds with and without dopant elements, incorporated into hardystonite. Initially, strontium-magnesium-doped hardystonite (DHT) nanopowder was synthesized through mechanical milling followed by thermal treatment. The successful formation of a single-phase hardystonite structure was verified by X-ray diffraction (XRD), with estimated crystallite and particle sizes of approximately 41.6 nm and 77.23 ± 36.60 nm, respectively. Subsequently, PCL/DHT composite scaffolds were fabricated with 3 wt%, 5 wt%, and 10 wt% bioceramic content. These scaffolds were assessed for fiber morphology, physical and chemical properties, hydrophilicity, surface roughness, mechanical characteristics, degradation, and biocompatibility. The results indicate that PCL/5 wt% DHT scaffolds exhibit superior biological, physical, and mechanical properties. Across all these tests, the PCL/5 wt% DHT scaffold consistently outperformed the others, suggesting its promising potential in bone tissue engineering.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 51011-51029"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027288422404481X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The production of scaffolds is a primary objective in tissue engineering for treating bone defects and diseases. The electrospinning process offers a promising technique to create structures resembling the extracellular matrix. Artificial polymeric grafts, such as poly(caprolactone) (PCL), often face issues of low strength and degradation. To overcome these limitations, we introduce ceramic reinforcing particles, specifically hardystonite (Ca2ZnSi2O7), known for its benefits in tissue regeneration. Considering the undeniable role of strontium and magnesium in bone regeneration, the aim of this study was to investigate and compare produced scaffolds with and without dopant elements, incorporated into hardystonite. Initially, strontium-magnesium-doped hardystonite (DHT) nanopowder was synthesized through mechanical milling followed by thermal treatment. The successful formation of a single-phase hardystonite structure was verified by X-ray diffraction (XRD), with estimated crystallite and particle sizes of approximately 41.6 nm and 77.23 ± 36.60 nm, respectively. Subsequently, PCL/DHT composite scaffolds were fabricated with 3 wt%, 5 wt%, and 10 wt% bioceramic content. These scaffolds were assessed for fiber morphology, physical and chemical properties, hydrophilicity, surface roughness, mechanical characteristics, degradation, and biocompatibility. The results indicate that PCL/5 wt% DHT scaffolds exhibit superior biological, physical, and mechanical properties. Across all these tests, the PCL/5 wt% DHT scaffold consistently outperformed the others, suggesting its promising potential in bone tissue engineering.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.