{"title":"Single atom and sub-nanometer copper clusters deposited on titania for hydrogen evolution reaction: A density functional study","authors":"Dorota Rutkowska-Zbik , Vidya Kaipanchery , Renata Tokarz-Sobieraj","doi":"10.1016/j.cattod.2024.115142","DOIUrl":null,"url":null,"abstract":"<div><div>We present a systematic theoretical study on the applicability of the hybrid Cu<sub>n</sub>-TiO<sub>2</sub> systems (n = 1 – 7) for photo electrochemical hydrogen evolution reaction. The preferred binding sites for hydrogen atom are determined. The hydrogen adopts a Cu-H-Ti bridging position when bound to Cu<sub>1</sub>-(TiO<sub>2</sub>)<sub>34</sub> or Cu<sub>7</sub>-(TiO<sub>2</sub>)<sub>34</sub> or Cu-H-Cu when bound to Cu<sub>2</sub>-(TiO<sub>2</sub>)<sub>34</sub> or Cu<sub>4</sub>-(TiO<sub>2</sub>)<sub>34</sub>. In Cu<sub>n</sub>-(TiO<sub>2</sub>)<sub>34</sub> with n = 3, 5, 6 the H atom sits in the three coordinate site, similar to that found for its favourable position while on Cu(111). The population analysis reveals that in the selected cases, n = 1, 2, 5, 7, the hydrogen binding exhibits three centre two electron bond character. In all the cases studied here the adsorbate has a hydride character. Among the studied clusters, those containing 1, 4, and 7 copper atoms exhibit moderate Gibbs free H binding energies indicating them as the best candidates for hydrogen evolution. The obtained results are compared with data available in literature for metallic copper and other materials having isolated single Cu atom sites. Considering Cu atom efficiency as well as wide availability and use of the titania as a support, these materials may be competitive for H<sub>2</sub> generation.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115142"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006369","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a systematic theoretical study on the applicability of the hybrid Cun-TiO2 systems (n = 1 – 7) for photo electrochemical hydrogen evolution reaction. The preferred binding sites for hydrogen atom are determined. The hydrogen adopts a Cu-H-Ti bridging position when bound to Cu1-(TiO2)34 or Cu7-(TiO2)34 or Cu-H-Cu when bound to Cu2-(TiO2)34 or Cu4-(TiO2)34. In Cun-(TiO2)34 with n = 3, 5, 6 the H atom sits in the three coordinate site, similar to that found for its favourable position while on Cu(111). The population analysis reveals that in the selected cases, n = 1, 2, 5, 7, the hydrogen binding exhibits three centre two electron bond character. In all the cases studied here the adsorbate has a hydride character. Among the studied clusters, those containing 1, 4, and 7 copper atoms exhibit moderate Gibbs free H binding energies indicating them as the best candidates for hydrogen evolution. The obtained results are compared with data available in literature for metallic copper and other materials having isolated single Cu atom sites. Considering Cu atom efficiency as well as wide availability and use of the titania as a support, these materials may be competitive for H2 generation.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.