{"title":"Surface grafting modification of BN significantly enhanced the thermal conductivity for epoxy resin","authors":"Lu Wu, Guozhi Jia","doi":"10.1016/j.ceramint.2024.09.398","DOIUrl":null,"url":null,"abstract":"<div><div>Boron nitride, as an excellent thermal conductive filler, has received widespread attention in the field of heat dissipation, and its interface thermal transport with organic matrix is a key issue for improving thermal conductivity. In this study, several typical modifiers are selected to modify boron nitride to improve its interfacial compatibility with epoxy resin. The composition of functional groups, crystal structure and factors affecting thermal conductivity of the modified boron nitride surface are systematically studied. The influence of main factors such as the structural characteristics of grafted molecules and the grafting functional groups on the construction of thermal conductivity channels was analyzed in detail. The results show that shorter chain length and fewer cross-linked branches are more conducive to phonon transport and propagation. The thermal conductivity of BN-KH570/EP composite at 26 wt% load reaches 1.52 W/m·K, which is 7.6 times that of pure epoxy resin. It also maintains good thermal stability at 600 °C, which provides a new idea for improving the interface interaction of boron nitride composites.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 50526-50534"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027288422404433X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Boron nitride, as an excellent thermal conductive filler, has received widespread attention in the field of heat dissipation, and its interface thermal transport with organic matrix is a key issue for improving thermal conductivity. In this study, several typical modifiers are selected to modify boron nitride to improve its interfacial compatibility with epoxy resin. The composition of functional groups, crystal structure and factors affecting thermal conductivity of the modified boron nitride surface are systematically studied. The influence of main factors such as the structural characteristics of grafted molecules and the grafting functional groups on the construction of thermal conductivity channels was analyzed in detail. The results show that shorter chain length and fewer cross-linked branches are more conducive to phonon transport and propagation. The thermal conductivity of BN-KH570/EP composite at 26 wt% load reaches 1.52 W/m·K, which is 7.6 times that of pure epoxy resin. It also maintains good thermal stability at 600 °C, which provides a new idea for improving the interface interaction of boron nitride composites.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.