Yongkang Lai , Feng Tian , Yu Gao , Chen Li , Qikui Man , Baogen Shen
{"title":"A novel synthesis of porous Ba2Co2Mn1.2Fe10.8O22/carbon composites for high efficiency electromagnetic wave absorption","authors":"Yongkang Lai , Feng Tian , Yu Gao , Chen Li , Qikui Man , Baogen Shen","doi":"10.1016/j.ceramint.2024.09.393","DOIUrl":null,"url":null,"abstract":"<div><div>Designing an electromagnetic wave (EMW) absorbing material with ultra-wide effective absorption bandwidth (EAB) and low filling ratio is the key to solving the problem of electromagnetic pollution. In this study, the porous Ba<sub>2</sub>Co<sub>2</sub>Mn<sub>1.2</sub>Fe<sub>10.8</sub>O<sub>22</sub>/C (Mn-Co<sub>2</sub>Y/C) composites were prepared by radial freeze-drying method as well as high temperature carbonization process (400 °C, 500 °C, 600 °C, and 700 °C). The research results indicate that the sample annealed at 600 °C exhibits superior EMW absorption properties, achieving the widest EAB of 5.77 GHz at a thickness of 1.7 mm, which is attributed to the synergistic effect of multiple reflections of EMWs within microchannels of the samples and the interfacial polarization between Mn-Co<sub>2</sub>Y ferrite and C material. Samples prepared at 600 °C have the best impedance matching, which makes it easier for EMWs to enter the material, thus exhibiting better EMW absorption performance. The magnetic loss mainly originates from natural resonance at low frequencies and eddy current loss at high frequencies, and the dielectric loss stems from relaxation loss and conductivity loss.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 50484-50495"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224044286","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing an electromagnetic wave (EMW) absorbing material with ultra-wide effective absorption bandwidth (EAB) and low filling ratio is the key to solving the problem of electromagnetic pollution. In this study, the porous Ba2Co2Mn1.2Fe10.8O22/C (Mn-Co2Y/C) composites were prepared by radial freeze-drying method as well as high temperature carbonization process (400 °C, 500 °C, 600 °C, and 700 °C). The research results indicate that the sample annealed at 600 °C exhibits superior EMW absorption properties, achieving the widest EAB of 5.77 GHz at a thickness of 1.7 mm, which is attributed to the synergistic effect of multiple reflections of EMWs within microchannels of the samples and the interfacial polarization between Mn-Co2Y ferrite and C material. Samples prepared at 600 °C have the best impedance matching, which makes it easier for EMWs to enter the material, thus exhibiting better EMW absorption performance. The magnetic loss mainly originates from natural resonance at low frequencies and eddy current loss at high frequencies, and the dielectric loss stems from relaxation loss and conductivity loss.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.