Ultraviolet thermally tunable silicon magnetic plasmon induced transparency

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Lili Yu , Fan Ji , Tian Guo , Zhendong Yan , Zhong Huang , Juan Deng , Chaojun Tang
{"title":"Ultraviolet thermally tunable silicon magnetic plasmon induced transparency","authors":"Lili Yu ,&nbsp;Fan Ji ,&nbsp;Tian Guo ,&nbsp;Zhendong Yan ,&nbsp;Zhong Huang ,&nbsp;Juan Deng ,&nbsp;Chaojun Tang","doi":"10.1016/j.optcom.2024.131312","DOIUrl":null,"url":null,"abstract":"<div><div>Pushing a tunable metamaterial magnetic plasmon resonance with a narrow linewidth into the ultraviolet region still remains a challenge, which is desirable for the applications of optoelectronic devices in the ultraviolet (UV) range. Here, a thermally tunable narrow UV magnetic plasmon induced transparency (PIT) is explored in a metamaterial consisting of Si vertical split ring resonator (Si VSRRs) array. With the 3D metamaterials suspended in air to minimize the dielectric substrate effect, the plasmonic interference between the bright broad Si UV magnetic plasmon and the dark narrow Wood-Rayleigh anomaly mode produces a narrow PIT with a bandwidth of 5.2 nm and a Rabi splitting energy of 87 meV in the UV, revealed by the coupled Lorentz oscillator theory. Moreover, a dynamic tuning of the UV magnetic PIT and the associated slow light is achieved via temperature change of the encapsulated ethanol. With a high-level sensitivity of 180 nm/RIU and a figure of merit of 45, the lifted Si VSRR is applicable to detecting sub nanometre-thick analytes, indicating the potential for developing UV plasmonic biosensing.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131312"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010496","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pushing a tunable metamaterial magnetic plasmon resonance with a narrow linewidth into the ultraviolet region still remains a challenge, which is desirable for the applications of optoelectronic devices in the ultraviolet (UV) range. Here, a thermally tunable narrow UV magnetic plasmon induced transparency (PIT) is explored in a metamaterial consisting of Si vertical split ring resonator (Si VSRRs) array. With the 3D metamaterials suspended in air to minimize the dielectric substrate effect, the plasmonic interference between the bright broad Si UV magnetic plasmon and the dark narrow Wood-Rayleigh anomaly mode produces a narrow PIT with a bandwidth of 5.2 nm and a Rabi splitting energy of 87 meV in the UV, revealed by the coupled Lorentz oscillator theory. Moreover, a dynamic tuning of the UV magnetic PIT and the associated slow light is achieved via temperature change of the encapsulated ethanol. With a high-level sensitivity of 180 nm/RIU and a figure of merit of 45, the lifted Si VSRR is applicable to detecting sub nanometre-thick analytes, indicating the potential for developing UV plasmonic biosensing.
紫外热可调硅磁等离子体诱导透明度
将具有窄线宽的可调谐超材料磁等离子体共振推向紫外线区域仍然是一项挑战,而这正是紫外线(UV)范围内光电器件应用所需要的。这里,我们在由硅垂直分裂环谐振器(Si VSRRs)阵列组成的超材料中探索了一种热可调窄紫外磁性等离子体诱导透明度(PIT)。由于三维超材料悬浮在空气中以尽量减小介质基底效应,亮宽的硅紫外磁等离子体与暗窄的伍德-雷利反常模式之间的等离子体干涉产生了带宽为 5.2 nm 的窄 PIT,其在紫外的拉比分裂能量为 87 meV,这是耦合洛伦兹振荡器理论所揭示的。此外,通过改变封装乙醇的温度,还可以实现紫外磁性 PIT 和相关慢光的动态调节。提升后的 Si VSRR 具有 180 nm/RIU 的高灵敏度和 45 的优越性,适用于检测亚纳米厚度的分析物,这表明它具有开发紫外等离子体生物传感的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信