Jinchang Xu , Yongqi Jian , Guang-Qiang Yu , Wanli Liang , Junmin Zhu , Muzi Yang , Jian Chen , Fangyan Xie , Yanshuo Jin , Nan Wang , Xi-Bo Li , Hui Meng
{"title":"Manipulating the spin configuration by topochemical transformation for optimized intermediates adsorption ability in oxygen evolution reaction","authors":"Jinchang Xu , Yongqi Jian , Guang-Qiang Yu , Wanli Liang , Junmin Zhu , Muzi Yang , Jian Chen , Fangyan Xie , Yanshuo Jin , Nan Wang , Xi-Bo Li , Hui Meng","doi":"10.1016/S1872-2067(24)60140-3","DOIUrl":null,"url":null,"abstract":"<div><div>The underlying spin-related mechanism remains unclear, and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions. Therefore, it is urgent to study spin-dependent oxygen evolution reaction (OER) performance through a controllable method. Herein, we adopt a topochemical reaction method to synthesize a series of selenides with <em>e</em><sub>g</sub> occupancies ranging from 1.67 to 1.37. The process begins with monoclinic-CoSeO<sub>3</sub>, featuring a distinct laminar structure and Co-O<sub>6</sub> coordination. The topochemical reaction induces significant changes in the crystal field's intensity, leading to spin state transitions. These transitions are driven by topological changes from a Co-O-Se-O-Co to a Co-Se-Co configuration, strengthening the crystalline field and reducing <em>e</em><sub>g</sub> orbital occupancy. This reconfiguration of spin states shifts the rate-determining step from desorption to adsorption for both OER and the hydrogen evolution reaction (HER), reducing the potential-determined step barrier and enhancing overall catalytic efficiency. As a result, the synthesized cobalt selenide exhibits significantly enhanced adsorption capabilities. The material demonstrates impressive overpotentials of 35 mV for HER, 250 mV for OER, and 270 mV for overall water splitting, indicating superior catalytic activity and efficiency. Additionally, a negative relation between <em>e</em><sub>g</sub> filling and OER catalytic performance confirms the spin-dependent nature of OER. Our findings provide crucial insights into the role of spin state transitions in catalytic performance.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 195-211"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The underlying spin-related mechanism remains unclear, and the rational manipulation of spin states is challenging due to various spin configurations under different coordination conditions. Therefore, it is urgent to study spin-dependent oxygen evolution reaction (OER) performance through a controllable method. Herein, we adopt a topochemical reaction method to synthesize a series of selenides with eg occupancies ranging from 1.67 to 1.37. The process begins with monoclinic-CoSeO3, featuring a distinct laminar structure and Co-O6 coordination. The topochemical reaction induces significant changes in the crystal field's intensity, leading to spin state transitions. These transitions are driven by topological changes from a Co-O-Se-O-Co to a Co-Se-Co configuration, strengthening the crystalline field and reducing eg orbital occupancy. This reconfiguration of spin states shifts the rate-determining step from desorption to adsorption for both OER and the hydrogen evolution reaction (HER), reducing the potential-determined step barrier and enhancing overall catalytic efficiency. As a result, the synthesized cobalt selenide exhibits significantly enhanced adsorption capabilities. The material demonstrates impressive overpotentials of 35 mV for HER, 250 mV for OER, and 270 mV for overall water splitting, indicating superior catalytic activity and efficiency. Additionally, a negative relation between eg filling and OER catalytic performance confirms the spin-dependent nature of OER. Our findings provide crucial insights into the role of spin state transitions in catalytic performance.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.