{"title":"Numerical methods and key issues for the study of particle material fragmentation behavior-A review","authors":"Shaomin Liang , Y.T. Feng , Zhihua Wang","doi":"10.1016/j.powtec.2024.120457","DOIUrl":null,"url":null,"abstract":"<div><div>The fragmentation behavior of particle materials is widely observed in natural environments, engineering applications, and other fields. It is an important factor contributing to natural disasters and engineering accidents. This paper aims to provide a selective overview of research methods for studying particle fragmentation behavior. The review primarily focuses on numerical methods for investigating particle fragmentation and key problems of interest in this field. Firstly, it classifies and summarizes the numerical methods based on the discrete element method, the coupling of discrete element and finite element method, the finite element method, and the peridynamics theory. It outlines the proposal, implementation process, development history, major applications, and existing issues associated with each method, suggesting possible solutions where applicable. Secondly, it discusses key issues in particle fragmentation research, including fragmentation mechanisms, fragmentation criteria, major influencing factors, size distribution, and energy problems. Finally, the paper concludes with an outlook on future research efforts in the field of particle fragmentation.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"451 ","pages":"Article 120457"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003259102401101X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fragmentation behavior of particle materials is widely observed in natural environments, engineering applications, and other fields. It is an important factor contributing to natural disasters and engineering accidents. This paper aims to provide a selective overview of research methods for studying particle fragmentation behavior. The review primarily focuses on numerical methods for investigating particle fragmentation and key problems of interest in this field. Firstly, it classifies and summarizes the numerical methods based on the discrete element method, the coupling of discrete element and finite element method, the finite element method, and the peridynamics theory. It outlines the proposal, implementation process, development history, major applications, and existing issues associated with each method, suggesting possible solutions where applicable. Secondly, it discusses key issues in particle fragmentation research, including fragmentation mechanisms, fragmentation criteria, major influencing factors, size distribution, and energy problems. Finally, the paper concludes with an outlook on future research efforts in the field of particle fragmentation.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.