Fan Yang , Shuai Fu , Qiaochao Xue , Linjin Huang , Fangfang Wang , Kang Yan
{"title":"Effects of structural design on the performance of low-temperature co-fired multilayer piezoelectric ceramic actuators","authors":"Fan Yang , Shuai Fu , Qiaochao Xue , Linjin Huang , Fangfang Wang , Kang Yan","doi":"10.1016/j.mseb.2024.117864","DOIUrl":null,"url":null,"abstract":"<div><div>The multilayer piezoelectric ceramic actuator (MLCA) represents a crucial driving component for sophisticated equipment in intelligent control systems. Nevertheless, the electromechanical properties of the MLCA are challenging to comprehend due to its intricate structure. Herein, we carried a study to investigate the structure design and preparation of MLCA utilizing finite element simulation calculations and the low-temperature co-fired ceramic (LTCC) technique. The results of simulation demonstrate that the multilayer piezoelectric ceramic exhibits a nonlinear relationship between output performance and the structural dimensions of the devices. A low-cost MLCA with a large piezoelectric coefficient <em>d</em><sub>33</sub> of 8172 pC/N was prepared by the LTCC technique using silver as the inner electrode. The MLCA exhibits notable micron-level displacement output characteristics in resonant mode, as demonstrated by finite element calculations and device performance characterization. This offers a promising avenue for the development of cost-effective miniaturized precision piezoelectric actuator devices.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"312 ","pages":"Article 117864"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006937","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The multilayer piezoelectric ceramic actuator (MLCA) represents a crucial driving component for sophisticated equipment in intelligent control systems. Nevertheless, the electromechanical properties of the MLCA are challenging to comprehend due to its intricate structure. Herein, we carried a study to investigate the structure design and preparation of MLCA utilizing finite element simulation calculations and the low-temperature co-fired ceramic (LTCC) technique. The results of simulation demonstrate that the multilayer piezoelectric ceramic exhibits a nonlinear relationship between output performance and the structural dimensions of the devices. A low-cost MLCA with a large piezoelectric coefficient d33 of 8172 pC/N was prepared by the LTCC technique using silver as the inner electrode. The MLCA exhibits notable micron-level displacement output characteristics in resonant mode, as demonstrated by finite element calculations and device performance characterization. This offers a promising avenue for the development of cost-effective miniaturized precision piezoelectric actuator devices.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.