Ziyan Huang , Xinzhao Jiang , Lichen Zhang , Wei Wang , Ziang Li, Yiyang Huang, Yichang Xu, Liang Zhou, Jie Wu, Jincheng Tang, Kun Xi, Yu Feng, Liang Chen
{"title":"Multifunctional manganese-based nanogels catalyze immune energy metabolism to promote bone repair","authors":"Ziyan Huang , Xinzhao Jiang , Lichen Zhang , Wei Wang , Ziang Li, Yiyang Huang, Yichang Xu, Liang Zhou, Jie Wu, Jincheng Tang, Kun Xi, Yu Feng, Liang Chen","doi":"10.1016/j.compositesb.2024.112005","DOIUrl":null,"url":null,"abstract":"<div><div>Tissue regeneration during bone defect repair is regulated by the energy metabolism of macrophages. Abnormal energy metabolism can negatively affect bone repair in pathological conditions. A promising strategy involves developing biomaterials that regulate macrophage energy metabolism to coordinate immune response and bone regeneration. In this study, hollow mesoporous MnO<sub>2</sub>, known for its excellent reactive oxygen species (ROS) scavenging and drug-loading abilities, was loaded with dexamethasone. This was followed by electrostatic self-assembly using chitosan coating to create nanogels (Alg-MD@CS). In vitro experiments showed that the nanogel effectively scavenged excess ROS, restored mitochondrial function, and reduced the levels of inflammatory factors. It downregulated glycolysis by inhibiting the ERK/HIF-1α/GLUT1 pathway, facilitating the M1-to-M2 phenotype switch to promote an anti-inflammatory and pro-regenerative ecological environment. In vivo experiments confirmed these findings. The nanogel reduced ROS levels in rats, reshaped the local immune microenvironment, and promoted bone regeneration. In summary, we developed a multifunctional nanogel for bone defect repair and demonstrated the significance and feasibility of reverse reprogramming by regulating the energy metabolism of macrophages during bone regeneration.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 112005"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008187","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue regeneration during bone defect repair is regulated by the energy metabolism of macrophages. Abnormal energy metabolism can negatively affect bone repair in pathological conditions. A promising strategy involves developing biomaterials that regulate macrophage energy metabolism to coordinate immune response and bone regeneration. In this study, hollow mesoporous MnO2, known for its excellent reactive oxygen species (ROS) scavenging and drug-loading abilities, was loaded with dexamethasone. This was followed by electrostatic self-assembly using chitosan coating to create nanogels (Alg-MD@CS). In vitro experiments showed that the nanogel effectively scavenged excess ROS, restored mitochondrial function, and reduced the levels of inflammatory factors. It downregulated glycolysis by inhibiting the ERK/HIF-1α/GLUT1 pathway, facilitating the M1-to-M2 phenotype switch to promote an anti-inflammatory and pro-regenerative ecological environment. In vivo experiments confirmed these findings. The nanogel reduced ROS levels in rats, reshaped the local immune microenvironment, and promoted bone regeneration. In summary, we developed a multifunctional nanogel for bone defect repair and demonstrated the significance and feasibility of reverse reprogramming by regulating the energy metabolism of macrophages during bone regeneration.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.