A subspace method based on the Neumann series for the solution of parametric linear systems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Antti Autio, Antti Hannukainen
{"title":"A subspace method based on the Neumann series for the solution of parametric linear systems","authors":"Antti Autio,&nbsp;Antti Hannukainen","doi":"10.1016/j.camwa.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a subspace method is proposed for efficient solution of parametric linear systems with a symmetric and positive definite coefficient matrix of the form <span><math><mi>I</mi><mo>−</mo><mi>A</mi><mo>(</mo><mi>σ</mi><mo>)</mo></math></span>. The motivation is to use the method for solution of linear systems appearing when solving parameter dependent elliptic PDEs using the finite element method (FEM). In the proposed method, one first computes a method subspace and then uses it to approximately solve the linear system for any parameter vector. The method subspace is designed in such a way that it contains the <span><math><mi>j</mi><mo>+</mo><mn>1</mn></math></span>-term truncated Neumann series approximation of the solution to desired accuracy for any admissible parameter vector. This allows us to use the best approximation property of subspace methods to show that the subspace solution is at least as accurate as the truncated Neumann series approximation. The performance of the method is demonstrated by numerical examples with the parametric diffusion equation. In these examples, the method yields much smaller errors than anticipated by the Neumann series based error analysis. We study this phenomenon in some special cases.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"178 ","pages":"Pages 1-18"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a subspace method is proposed for efficient solution of parametric linear systems with a symmetric and positive definite coefficient matrix of the form IA(σ). The motivation is to use the method for solution of linear systems appearing when solving parameter dependent elliptic PDEs using the finite element method (FEM). In the proposed method, one first computes a method subspace and then uses it to approximately solve the linear system for any parameter vector. The method subspace is designed in such a way that it contains the j+1-term truncated Neumann series approximation of the solution to desired accuracy for any admissible parameter vector. This allows us to use the best approximation property of subspace methods to show that the subspace solution is at least as accurate as the truncated Neumann series approximation. The performance of the method is demonstrated by numerical examples with the parametric diffusion equation. In these examples, the method yields much smaller errors than anticipated by the Neumann series based error analysis. We study this phenomenon in some special cases.
基于诺依曼数列的子空间法求解参数线性系统
本研究提出了一种子空间方法,用于高效求解具有 I-A(σ)形式对称正定系数矩阵的参数线性系统。其动机是利用该方法求解使用有限元法(FEM)求解参数相关椭圆 PDE 时出现的线性系统。在所提出的方法中,首先要计算一个方法子空间,然后用它来近似求解任意参数向量的线性系统。该方法子空间的设计方式是,它包含对任意可接受参数向量的 j+1 期截断诺依曼级数近似解,以达到所需的精度。这样,我们就能利用子空间方法的最佳近似特性,证明子空间解至少与截尾诺伊曼级数近似一样精确。我们通过参数扩散方程的数值示例证明了该方法的性能。在这些例子中,该方法产生的误差远远小于基于诺依曼数列的误差分析所预期的误差。我们在一些特殊情况下研究了这一现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信