Xia Li , Birong You , Xuhui Wang , Zhipeng Zhao , Tianyu Qi , Jinyou Xu
{"title":"A study of soil modelling methods based on line-structured light—Preparing for the subsoiling digital twin","authors":"Xia Li , Birong You , Xuhui Wang , Zhipeng Zhao , Tianyu Qi , Jinyou Xu","doi":"10.1016/j.compag.2024.109685","DOIUrl":null,"url":null,"abstract":"<div><div>The virtual model forms the foundation for building a digital twin system; however, methods for modelling dynamically changing soil in subsoiling have not yet been studied. To provide technical guidance for constructing such a system, this study employs a line structured light method for soil model construction. After conducting field and indoor trials, the extreme value method, grayscale centroid method, and Steger algorithm are used to extract the laser centreline. Results indicate that the extreme value method and grayscale centroid method require relatively little processing time—approximately 1.9 ms and 16 ms, respectively—with processing times being nearly the same in different environments. In contrast, the Steger algorithm requires over 300 ms. Regarding memory usage, the three methods demonstrate similar memory consumption when processing images of different environmental conditions: the extreme value method stabilizes at 86.48 MB, the grayscale centroid method at 105.72 MB, and the Steger algorithm fluctuates around 110 MB. The grayscale centroid method exhibits the best stability, making it most suitable for centreline extraction in the digital twin system. During 3D reconstruction, camera capture frequency is positively correlated with reconstruction quality, while movement speed negatively correlates. Each image’s processing time is under 1 ms, showing that the line laser 3D reconstruction method meets the real-time requirements of the digital twin system for subsoiling.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109685"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010767","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The virtual model forms the foundation for building a digital twin system; however, methods for modelling dynamically changing soil in subsoiling have not yet been studied. To provide technical guidance for constructing such a system, this study employs a line structured light method for soil model construction. After conducting field and indoor trials, the extreme value method, grayscale centroid method, and Steger algorithm are used to extract the laser centreline. Results indicate that the extreme value method and grayscale centroid method require relatively little processing time—approximately 1.9 ms and 16 ms, respectively—with processing times being nearly the same in different environments. In contrast, the Steger algorithm requires over 300 ms. Regarding memory usage, the three methods demonstrate similar memory consumption when processing images of different environmental conditions: the extreme value method stabilizes at 86.48 MB, the grayscale centroid method at 105.72 MB, and the Steger algorithm fluctuates around 110 MB. The grayscale centroid method exhibits the best stability, making it most suitable for centreline extraction in the digital twin system. During 3D reconstruction, camera capture frequency is positively correlated with reconstruction quality, while movement speed negatively correlates. Each image’s processing time is under 1 ms, showing that the line laser 3D reconstruction method meets the real-time requirements of the digital twin system for subsoiling.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.