Zhigang Ren, Han Zheng, Jian Chen, Tao Chen, Pengyang Xie, Yunzhe Xu, Jiaming Deng, Huanzhe Wang, Mingjiang Sun, Wenchi Jiao
{"title":"Integrating UAV, UGV and UAV-UGV collaboration in future industrialized agriculture: Analysis, opportunities and challenges","authors":"Zhigang Ren, Han Zheng, Jian Chen, Tao Chen, Pengyang Xie, Yunzhe Xu, Jiaming Deng, Huanzhe Wang, Mingjiang Sun, Wenchi Jiao","doi":"10.1016/j.compag.2024.109631","DOIUrl":null,"url":null,"abstract":"<div><div>Industrialized agriculture is the direction of future agricultural development, which is developing in the direction of scale, diversification, unmanned and integration. The cooperative operation of UAV, UGV and UAV-UGV is a hot topic in the field of intelligent agricultural multi-machine research. However, at present, most of the research projects have not systematically given the solutions of UAV, UGV and UAV-UGV collaborative application in the future industrialized agriculture. Therefore, we propose the development model of future industrialized agriculture, which derives the key technologies and applications of agricultural UAV, UGV and UAV-UGV collaboration. We summarize and discuss the difficulties and innovative design of the application of UAV, UGV and UAV-UGV collaboration technology in the future industrialized environment, and analyze the opportunities and challenges of the application of UAV, UGV and UAV-UGV collaboration technology in combination with future industrialized agricultural production. Finally, we describe that more technologies (multi-modal sensing technology, embodied intelligent control technology, edge computing technology, end-edge cloud collaborative management and control technology, virtual reality, augmented reality, etc.) are the future research directions for the application of UAV, UGV and UAV-UGV collaboration in industrialized agriculture.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109631"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010226","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Industrialized agriculture is the direction of future agricultural development, which is developing in the direction of scale, diversification, unmanned and integration. The cooperative operation of UAV, UGV and UAV-UGV is a hot topic in the field of intelligent agricultural multi-machine research. However, at present, most of the research projects have not systematically given the solutions of UAV, UGV and UAV-UGV collaborative application in the future industrialized agriculture. Therefore, we propose the development model of future industrialized agriculture, which derives the key technologies and applications of agricultural UAV, UGV and UAV-UGV collaboration. We summarize and discuss the difficulties and innovative design of the application of UAV, UGV and UAV-UGV collaboration technology in the future industrialized environment, and analyze the opportunities and challenges of the application of UAV, UGV and UAV-UGV collaboration technology in combination with future industrialized agricultural production. Finally, we describe that more technologies (multi-modal sensing technology, embodied intelligent control technology, edge computing technology, end-edge cloud collaborative management and control technology, virtual reality, augmented reality, etc.) are the future research directions for the application of UAV, UGV and UAV-UGV collaboration in industrialized agriculture.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.