H(curl2)-conforming triangular spectral element method for quad-curl problems

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Lixiu Wang , Huiyuan Li , Qian Zhang , Zhimin Zhang
{"title":"H(curl2)-conforming triangular spectral element method for quad-curl problems","authors":"Lixiu Wang ,&nbsp;Huiyuan Li ,&nbsp;Qian Zhang ,&nbsp;Zhimin Zhang","doi":"10.1016/j.cam.2024.116362","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><msup><mrow><mtext>curl</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-conforming triangular spectral element method to solve the quad-curl problems. We first explicitly construct the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><msup><mrow><mtext>curl</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-conforming elements on triangles through the contravariant transform and the affine mapping from the reference element to physical elements. These constructed elements possess a hierarchical structure and can be categorized into the kernel space and non-kernel space of the curl operator. We then establish <span><math><mrow><mi>H</mi><mrow><mo>(</mo><msup><mrow><mtext>curl</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-conforming triangular spectral element spaces and the corresponding mixed formulated spectral element approximation scheme for the quad-curl problems and related eigenvalue problems. Subsequently, we present the best spectral element approximation theory in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><msup><mrow><mtext>curl</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>-seminorms. Notably, the degrees of polynomials in the kernel space solely impact the convergence rate of the <span><math><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, without affecting the semi-norm of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mtext>curl</mtext><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>H</mi><mrow><mo>(</mo><msup><mrow><mtext>curl</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. This observation enables us to derive eigenvalue approximations from either the upper or lower side by selecting different degrees of polynomials for the kernel space and non-kernel space of the curl operator. Finally, numerical results demonstrate the effectiveness and efficiency of our method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116362"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the H(curl2)-conforming triangular spectral element method to solve the quad-curl problems. We first explicitly construct the H(curl2)-conforming elements on triangles through the contravariant transform and the affine mapping from the reference element to physical elements. These constructed elements possess a hierarchical structure and can be categorized into the kernel space and non-kernel space of the curl operator. We then establish H(curl2)-conforming triangular spectral element spaces and the corresponding mixed formulated spectral element approximation scheme for the quad-curl problems and related eigenvalue problems. Subsequently, we present the best spectral element approximation theory in H(curl2;Ω)-seminorms. Notably, the degrees of polynomials in the kernel space solely impact the convergence rate of the (L2(Ω))2-norm of uh, without affecting the semi-norm of H(curl;Ω) and H(curl2;Ω). This observation enables us to derive eigenvalue approximations from either the upper or lower side by selecting different degrees of polynomials for the kernel space and non-kernel space of the curl operator. Finally, numerical results demonstrate the effectiveness and efficiency of our method.
四曲面问题的 H(curl2)-符合三角谱元法
在本文中,我们考虑用H(curl2)-conform三角谱元法来解决四曲面问题。我们首先通过从参考元素到物理元素的协变变换和仿射映射,在三角形上明确地构造出 H(curl2)-conforming 元素。这些构建的元素具有层次结构,可分为卷曲算子的核空间和非核空间。然后,我们为四卷问题和相关特征值问题建立了 H(curl2)-conforming 三角谱元空间和相应的混合配制谱元近似方案。随后,我们提出了 H(curl2;Ω)-seminorms 中的最佳谱元近似理论。值得注意的是,核空间中多项式的度数只影响 uh 的 (L2(Ω))2 准则的收敛速度,而不影响 H(curl;Ω) 和 H(curl2;Ω) 的半准则。这一观察结果使我们能够通过为卷曲算子的核空间和非核空间选择不同的多项式度,从上边或下边推导出特征值近似值。最后,数值结果证明了我们方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信