A general correction for numerical integration rules over piece-wise continuous functions

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Shipra Mahata , Samala Rathan , Juan Ruiz-Álvarez , Dionisio F. Yáñez
{"title":"A general correction for numerical integration rules over piece-wise continuous functions","authors":"Shipra Mahata ,&nbsp;Samala Rathan ,&nbsp;Juan Ruiz-Álvarez ,&nbsp;Dionisio F. Yáñez","doi":"10.1016/j.cam.2024.116378","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a novel approach to enhance the accuracy of classical quadrature rules by incorporating correction terms. The proposed method is particularly effective when the position of an isolated discontinuity in the function and the jump in the function and its derivatives at that position are known. Traditional numerical integration rules are exact for polynomials of certain degree. However, they may not provide accurate results for piece-wise polynomials or functions with discontinuities without modifying the location and number of data points in the formula. Our proposed correction terms address this limitation, enabling the integration rule to conserve its accuracy even in the presence of a jump discontinuity. The numerical experiments that we present support the theoretical results obtained.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116378"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006265","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel approach to enhance the accuracy of classical quadrature rules by incorporating correction terms. The proposed method is particularly effective when the position of an isolated discontinuity in the function and the jump in the function and its derivatives at that position are known. Traditional numerical integration rules are exact for polynomials of certain degree. However, they may not provide accurate results for piece-wise polynomials or functions with discontinuities without modifying the location and number of data points in the formula. Our proposed correction terms address this limitation, enabling the integration rule to conserve its accuracy even in the presence of a jump discontinuity. The numerical experiments that we present support the theoretical results obtained.
片断连续函数数值积分规则的一般修正
本文提出了一种新方法,通过加入修正项来提高经典正交规则的精度。当已知函数中孤立间断点的位置以及该位置处函数及其导数的跃迁时,所提出的方法尤为有效。传统的数值积分规则对于一定程度的多项式是精确的。但是,如果不修改公式中数据点的位置和数量,它们可能无法为片断多项式或具有不连续的函数提供精确的结果。我们提出的修正项解决了这一局限性,使积分规则即使在存在跳跃不连续性的情况下也能保持其精确性。我们提出的数值实验支持所获得的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信