{"title":"Sodium thiosulfate-assisted synthesis of high-Pt-content intermetallic electrocatalysts for fuel cells","authors":"Shi-Yi Yin , Shi-Long Xu , Zi-Rui Li , Shuai Li , Kun-Ze Xue , Wanqun Zhang , Sheng-Qi Chu , Hai-Wei Liang","doi":"10.1016/S1872-2067(24)60127-0","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon supported Pt-based intermetallic compounds (IMCs) with high activity and durability are the most competitive cathode catalysts for the commercialization of proton exchange membrane fuel cells (PEMFCs). The synthesis of Pt-based intermetallics with a good balance between small size and high metal loading remains challenging because of the high-temperature annealing that is generally required to form intermetallic phases. We developed a sodium thiosulfate-assisted impregnation strategy to synthesize small-sized and highly ordered Pt<em>M</em> IMCs catalysts (<em>M</em> = Co, Fe, Ni) with high-Pt-content (up to 44.5 wt%). During the impregnation process, thiosulfate could reduce H<sub>2</sub>PtCl<sub>6</sub> to form uniformly dispersed Pt colloid on carbon supports, which in turn prevents the aggregation of Pt at the low-temperature annealing stage. Additionally, the strong interaction between Pt and S inhibits particle sintering, ensuring the formation of small-sized and uniform Pt<em>M</em> intermetallic catalysts at the high-temperature annealing stage. The optimized intermetallic PtCo catalyst delivered a high mass activity of 0.72 A mg<sub>Pt</sub><sup>–1</sup> and a large power performance of 1.17 W cm<sup>–2</sup> at 0.65 V under H<sub>2</sub>-air conditions, along with 74% mass activity retention after the accelerated stress test.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 292-301"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon supported Pt-based intermetallic compounds (IMCs) with high activity and durability are the most competitive cathode catalysts for the commercialization of proton exchange membrane fuel cells (PEMFCs). The synthesis of Pt-based intermetallics with a good balance between small size and high metal loading remains challenging because of the high-temperature annealing that is generally required to form intermetallic phases. We developed a sodium thiosulfate-assisted impregnation strategy to synthesize small-sized and highly ordered PtM IMCs catalysts (M = Co, Fe, Ni) with high-Pt-content (up to 44.5 wt%). During the impregnation process, thiosulfate could reduce H2PtCl6 to form uniformly dispersed Pt colloid on carbon supports, which in turn prevents the aggregation of Pt at the low-temperature annealing stage. Additionally, the strong interaction between Pt and S inhibits particle sintering, ensuring the formation of small-sized and uniform PtM intermetallic catalysts at the high-temperature annealing stage. The optimized intermetallic PtCo catalyst delivered a high mass activity of 0.72 A mgPt–1 and a large power performance of 1.17 W cm–2 at 0.65 V under H2-air conditions, along with 74% mass activity retention after the accelerated stress test.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.