A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation

Sara Mihandoost
{"title":"A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation","authors":"Sara Mihandoost","doi":"10.1016/j.health.2024.100370","DOIUrl":null,"url":null,"abstract":"<div><div>Atrial Fibrillation (AF) is a common type of irregular heartbeat, and early detection can significantly improve treatment outcomes and prognoses. Single-lead Electrocardiogram (ECG) devices are under extensive scrutiny for monitoring patients' heart health worldwide. Standardized ECG signal monitoring has demonstrated a significant reduction in mortality rates associated with severe cardiovascular diseases. However, the automatic detection method for AF requires significant improvement. This study presents a novel approach that utilizes the cyclostationary analysis of ECG signals, uncovering a spectral hidden periodicity between the QRS-T (the main wave components representing electrical activity in the heart) complexes of the ECG signal through the Spectral Correlation Function (SCF). To validate the proposed method's performance, the single ECG's SCF coefficients are applied to the Convolutional Recurrent Neural Network (CRNN), which consists of convolutional and long short-term memory (LSTM) layers, on the 2017 PhysioNet challenge dataset. The obtained results demonstrate that the proposed approach efficiently represents ECG signals through SCF coefficients, leading to the accurate detection of AF with an average accuracy of 92.76% and an average F1-score of 89.1%.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"6 ","pages":"Article 100370"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atrial Fibrillation (AF) is a common type of irregular heartbeat, and early detection can significantly improve treatment outcomes and prognoses. Single-lead Electrocardiogram (ECG) devices are under extensive scrutiny for monitoring patients' heart health worldwide. Standardized ECG signal monitoring has demonstrated a significant reduction in mortality rates associated with severe cardiovascular diseases. However, the automatic detection method for AF requires significant improvement. This study presents a novel approach that utilizes the cyclostationary analysis of ECG signals, uncovering a spectral hidden periodicity between the QRS-T (the main wave components representing electrical activity in the heart) complexes of the ECG signal through the Spectral Correlation Function (SCF). To validate the proposed method's performance, the single ECG's SCF coefficients are applied to the Convolutional Recurrent Neural Network (CRNN), which consists of convolutional and long short-term memory (LSTM) layers, on the 2017 PhysioNet challenge dataset. The obtained results demonstrate that the proposed approach efficiently represents ECG signals through SCF coefficients, leading to the accurate detection of AF with an average accuracy of 92.76% and an average F1-score of 89.1%.
用于心电图分类和心房颤动诊断的带频谱相关函数的深度神经网络模型
心房颤动(房颤)是一种常见的心律不齐类型,早期检测可显著改善治疗效果和预后。单导联心电图(ECG)设备在监测全球患者心脏健康方面受到广泛关注。标准化的心电信号监测已证明可显著降低与严重心血管疾病相关的死亡率。然而,心房颤动的自动检测方法还需要大力改进。本研究提出了一种新方法,利用心电信号的周期性分析,通过频谱相关函数(SCF)揭示心电信号 QRS-T(代表心脏电活动的主要波形成分)复合体之间的频谱隐藏周期性。为验证所提方法的性能,在 2017 PhysioNet 挑战赛数据集上,将单个心电图的 SCF 系数应用于卷积递归神经网络(CRNN),该网络由卷积层和长短期记忆层组成。结果表明,所提出的方法能通过 SCF 系数有效地表示心电信号,从而准确检测出房颤,平均准确率为 92.76%,平均 F1 分数为 89.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信