3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor

Miaoran Zhang, Tengyu Yao, Tiezhu Xu, Xinji Zhou, Duo Chen, Laifa Shen
{"title":"3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor","authors":"Miaoran Zhang,&nbsp;Tengyu Yao,&nbsp;Tiezhu Xu,&nbsp;Xinji Zhou,&nbsp;Duo Chen,&nbsp;Laifa Shen","doi":"10.1016/j.apmate.2024.100247","DOIUrl":null,"url":null,"abstract":"<div><div>The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H<sup>+</sup>, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 ​F ​cm<sup>−2</sup> at 30.78 ​mg ​cm<sup>−2</sup>) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 ​mWh cm<sup>−2</sup> ​at −60 ​°C, as well as operates well even at −80 ​°C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100247"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H+, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 ​F ​cm−2 at 30.78 ​mg ​cm−2) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 ​mWh cm−2 ​at −60 ​°C, as well as operates well even at −80 ​°C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.

Abstract Image

用于超低温质子伪电容器的高负载量三维打印氧化还原活性聚合物电极
超级电容器在极低温度下的稳定运行对于在恶劣环境中的应用至关重要。遗憾的是,传统的无机电极扩散动力学缓慢,质子伪电容器的循环稳定性差。在此,我们开发并合成了一种具有氧化还原活性的聚合物聚(1,5-二氨基萘),作为一种超快、高负载、耐用的伪电容阳极。聚(1,5-二氨基萘)的电荷存储取决于 C=N 基团与 H+ 的可逆配位反应,这使得与表面控制反应相关的快速动力学成为可能。三维打印的有机电极具有显著的面积电容(30.78 毫克/厘米-2 时为 8.43 F 厘米-2)和与厚度无关的速率性能。此外,三维打印质子伪电容器还具有很强的低温耐受性,在-60 °C时可提供0.44 mWh cm-2的高能量密度,即使在-80 °C时也能良好工作。这项工作表明,将有机材料设计与三维分层网络电极结构相结合,可为耐低温超级电容器提供一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信