Prediction of methylphenidate treatment response for ADHD using conventional and radiomics T1 and DTI features: Secondary analysis of a randomized clinical trial
Mingshi Chen , Zarah van der Pal , Maarten G. Poirot , Anouk Schrantee , Marco Bottelier , Sandra J.J. Kooij , Henk A. Marquering , Liesbeth Reneman , Matthan W.A. Caan
{"title":"Prediction of methylphenidate treatment response for ADHD using conventional and radiomics T1 and DTI features: Secondary analysis of a randomized clinical trial","authors":"Mingshi Chen , Zarah van der Pal , Maarten G. Poirot , Anouk Schrantee , Marco Bottelier , Sandra J.J. Kooij , Henk A. Marquering , Liesbeth Reneman , Matthan W.A. Caan","doi":"10.1016/j.nicl.2024.103707","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Attention-Deficit/Hyperactivity Disorder (ADHD) is commonly treated with methylphenidate (MPH). Although highly effective, MPH treatment still has a relatively high non-response rate of around 30%, highlighting the need for a better understanding of treatment response. Radiomics of T1-weighted images and Diffusion Tensor Imaging (DTI) combined with machine learning approaches could offer a novel method for assessing MPH treatment response.</div></div><div><h3>Purpose</h3><div>To evaluate the accuracy of both conventional and radiomics approaches in predicting treatment response based on baseline T1 and DTI data in stimulant-naive ADHD participants.</div></div><div><h3>Methods</h3><div>We performed a secondary analysis of a randomized clinical trial (ePOD-MPH), involving 47 stimulant-naive ADHD participants (23 boys aged 11.4 ± 0.4 years, 24 men aged 28.1 ± 4.3 years) who underwent 16 weeks of treatment with MPH. Baseline T1-weighted and DTI MRI scans were acquired. Treatment response was assessed at 8 weeks (during treatment) and one week after cessation of 16-week treatment (post-treatment) using the Clinical Global Impressions − Improvement scale as our primary outcome. We compared prediction accuracy using a conventional model and a radiomics model. The conventional approach included the volume of bilateral caudate, putamen, pallidum, accumbens, and hippocampus, and for DTI the mean fractional anisotropy (FA) of the entire brain white matter, bilateral Anterior Thalamic Radiation (ATR), and the splenium of the corpus callosum, totaling 14 regional features. For the radiomics approach, 380 features (shape-based and first-order statistics) were extracted from these 14 regions. XGBoost models with nested cross-validation were used and constructed for the total cohort (n = 47), as well as children (n = 23) and adults (n = 24) separately. Exact binomial tests were employed to compare model performance.</div></div><div><h3>Results</h3><div>For the conventional model, balanced accuracy (bAcc) in predicting treatment response during treatment was 63 % for the total cohort, 32 % for children, and 36 % for adults (Area Under the Receiver Operating Characteristic Curve (AUC-ROC): 0.69, 0.33, 0.41 respectively). Radiomics models demonstrated bAcc’s of 68 %, 64 %, and 64 % during treatment (AUC-ROCs of 0.73, 0.62, 0.69 respectively). These predictions were better than chance for both conventional and radiomics models in the total cohort (<em>p</em> = 0.04, <em>p</em> = 0.003 respectively). The radiomics models outperformed the conventional models during treatment in children only (<em>p</em> = 0.02). At post-treatment, performance was markedly reduced.</div></div><div><h3>Conclusion</h3><div>While conventional and radiomics models performed equally well in predicting clinical improvement across children and adults during treatment, radiomics features offered enhanced structural information beyond conventional region-based volume and FA averages in children. Prediction of symptom improvement one week after treatment cessation was poor, potentially due to the transient effects of stimulant treatment on symptom improvement.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"45 ","pages":"Article 103707"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224001487","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Attention-Deficit/Hyperactivity Disorder (ADHD) is commonly treated with methylphenidate (MPH). Although highly effective, MPH treatment still has a relatively high non-response rate of around 30%, highlighting the need for a better understanding of treatment response. Radiomics of T1-weighted images and Diffusion Tensor Imaging (DTI) combined with machine learning approaches could offer a novel method for assessing MPH treatment response.
Purpose
To evaluate the accuracy of both conventional and radiomics approaches in predicting treatment response based on baseline T1 and DTI data in stimulant-naive ADHD participants.
Methods
We performed a secondary analysis of a randomized clinical trial (ePOD-MPH), involving 47 stimulant-naive ADHD participants (23 boys aged 11.4 ± 0.4 years, 24 men aged 28.1 ± 4.3 years) who underwent 16 weeks of treatment with MPH. Baseline T1-weighted and DTI MRI scans were acquired. Treatment response was assessed at 8 weeks (during treatment) and one week after cessation of 16-week treatment (post-treatment) using the Clinical Global Impressions − Improvement scale as our primary outcome. We compared prediction accuracy using a conventional model and a radiomics model. The conventional approach included the volume of bilateral caudate, putamen, pallidum, accumbens, and hippocampus, and for DTI the mean fractional anisotropy (FA) of the entire brain white matter, bilateral Anterior Thalamic Radiation (ATR), and the splenium of the corpus callosum, totaling 14 regional features. For the radiomics approach, 380 features (shape-based and first-order statistics) were extracted from these 14 regions. XGBoost models with nested cross-validation were used and constructed for the total cohort (n = 47), as well as children (n = 23) and adults (n = 24) separately. Exact binomial tests were employed to compare model performance.
Results
For the conventional model, balanced accuracy (bAcc) in predicting treatment response during treatment was 63 % for the total cohort, 32 % for children, and 36 % for adults (Area Under the Receiver Operating Characteristic Curve (AUC-ROC): 0.69, 0.33, 0.41 respectively). Radiomics models demonstrated bAcc’s of 68 %, 64 %, and 64 % during treatment (AUC-ROCs of 0.73, 0.62, 0.69 respectively). These predictions were better than chance for both conventional and radiomics models in the total cohort (p = 0.04, p = 0.003 respectively). The radiomics models outperformed the conventional models during treatment in children only (p = 0.02). At post-treatment, performance was markedly reduced.
Conclusion
While conventional and radiomics models performed equally well in predicting clinical improvement across children and adults during treatment, radiomics features offered enhanced structural information beyond conventional region-based volume and FA averages in children. Prediction of symptom improvement one week after treatment cessation was poor, potentially due to the transient effects of stimulant treatment on symptom improvement.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.