{"title":"Method for predicting conductive heat transfer topologies based on Fourier neural operator","authors":"Jiacheng Yuan, Lei Zeng, Yewei Gui","doi":"10.1016/j.icheatmasstransfer.2024.108332","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an iterative topology optimizer for conductive heat transfer structures based on the Fourier neural operator (FNO). A data-driven model based on FNO is trained to predict the temperature under different material distributions, different boundary conditions, and different thermal loads. A new method is used to generate data, which makes the modeling process of temperature predictor completely independent of the traditional optimization method. Then by coupling the trained temperature predictor with the solid isotropic material with penalization (SIMP) method, a new iterative topology optimizer is formed. Numerical experiments demonstrate that the proposed method can generate heat transfer structures with good performance, and can apply the model trained on low-resolution data to the structural topology optimization with high resolution, which greatly improves the optimization efficiency. In addition to the heat conduction structure optimization problem, the method developed in this paper is expected to be applied to other optimization problems or coupled with other conventional optimization methods</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108332"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324010947","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an iterative topology optimizer for conductive heat transfer structures based on the Fourier neural operator (FNO). A data-driven model based on FNO is trained to predict the temperature under different material distributions, different boundary conditions, and different thermal loads. A new method is used to generate data, which makes the modeling process of temperature predictor completely independent of the traditional optimization method. Then by coupling the trained temperature predictor with the solid isotropic material with penalization (SIMP) method, a new iterative topology optimizer is formed. Numerical experiments demonstrate that the proposed method can generate heat transfer structures with good performance, and can apply the model trained on low-resolution data to the structural topology optimization with high resolution, which greatly improves the optimization efficiency. In addition to the heat conduction structure optimization problem, the method developed in this paper is expected to be applied to other optimization problems or coupled with other conventional optimization methods
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.