Detailed thermo-hydraulic investigation of 3D octet lattice structure integrated heat sink

IF 6.4 2区 工程技术 Q1 MECHANICS
Aditya Narkhede, N. Gnanasekaran, Ajay Kumar Yadav
{"title":"Detailed thermo-hydraulic investigation of 3D octet lattice structure integrated heat sink","authors":"Aditya Narkhede,&nbsp;N. Gnanasekaran,&nbsp;Ajay Kumar Yadav","doi":"10.1016/j.icheatmasstransfer.2024.108345","DOIUrl":null,"url":null,"abstract":"<div><div>The present research work examined the thermo-fluidic characteristics of a heat sink packed with octet-structured periodic metal foam having varying porosity (0.83–0.93) and unit cell lengths (UCL) of 2.5–5 <span><math><mi>mm</mi></math></span> for electronic cooling application. AlSi10Mg material is considered for the octet lattice structure with water as the cooling medium, with the inlet velocity ranging from 0.02 to 0.05 <span><math><mi>m</mi><mo>/</mo><mi>s</mi></math></span> and a steady heat flux of 10 <span><math><mi>W</mi><mo>/</mo><msup><mi>cm</mi><mn>2</mn></msup></math></span> applied at base of the substrate. The effect of the porosity, unit cell length, and inlet velocity on pressure gradient, friction factor, Nusselt number, wall temperature, heat transfer coefficient, and thermo-hydraulic performance parameter is analyzed. Larger pressure gradients are observed for lower values of porosity and unit cell length, with a maximum value of approximately 5000 <span><math><mi>Pa</mi><mo>/</mo><mi>m</mi></math></span> for the thermal system having 0.83 porosity, 2.5 <span><math><mi>mm</mi></math></span> UCL, and 0.05 <span><math><mi>m</mi><mo>/</mo><mi>s</mi></math></span> inlet velocity. The wall temperature drops with a rise in inlet velocity and a reduction in porosity and UCL, with the lowest value of 311 <span><math><mi>K</mi></math></span> for the case of 0.83 porosity, 2.5 <span><math><mi>mm</mi></math></span> UCL, and 0.05 <span><math><mi>m</mi><mo>/</mo><mi>s</mi></math></span> inlet velocity. The case of 0.83 porosity, 5 <span><math><mi>mm</mi></math></span> UCL, and 0.02 <span><math><mi>m</mi><mo>/</mo><mi>s</mi></math></span> velocity was determined as optimum design based on thermo-hydraulic performance parameter.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108345"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324011072","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present research work examined the thermo-fluidic characteristics of a heat sink packed with octet-structured periodic metal foam having varying porosity (0.83–0.93) and unit cell lengths (UCL) of 2.5–5 mm for electronic cooling application. AlSi10Mg material is considered for the octet lattice structure with water as the cooling medium, with the inlet velocity ranging from 0.02 to 0.05 m/s and a steady heat flux of 10 W/cm2 applied at base of the substrate. The effect of the porosity, unit cell length, and inlet velocity on pressure gradient, friction factor, Nusselt number, wall temperature, heat transfer coefficient, and thermo-hydraulic performance parameter is analyzed. Larger pressure gradients are observed for lower values of porosity and unit cell length, with a maximum value of approximately 5000 Pa/m for the thermal system having 0.83 porosity, 2.5 mm UCL, and 0.05 m/s inlet velocity. The wall temperature drops with a rise in inlet velocity and a reduction in porosity and UCL, with the lowest value of 311 K for the case of 0.83 porosity, 2.5 mm UCL, and 0.05 m/s inlet velocity. The case of 0.83 porosity, 5 mm UCL, and 0.02 m/s velocity was determined as optimum design based on thermo-hydraulic performance parameter.
三维八维晶格结构集成散热器的详细热流体力学研究
本研究工作考察了使用不同孔隙率(0.83-0.93)和单胞长度(UCL)(2.5-5 毫米)的八面体结构周期性金属泡沫填充的散热器的热流体特性,以用于电子冷却应用。八面体晶格结构的材料为 AlSi10Mg,冷却介质为水,入口速度为 0.02 至 0.05 m/s,基底的稳定热通量为 10 W/cm2。分析了孔隙率、单元长度和入口速度对压力梯度、摩擦因数、努塞尔特数、壁面温度、传热系数和热液性能参数的影响。在孔隙率为 0.83、UCL 为 2.5 毫米、入口速度为 0.05 米/秒的热系统中,孔隙率和单元长度越小,压力梯度越大,最大值约为 5000 Pa/m。壁温随着入口速度的增加、孔隙率和 UCL 的减小而下降,在孔隙率为 0.83、UCL 为 2.5 毫米、入口速度为 0.05 米/秒的情况下,壁温的最低值为 311 K。根据热液性能参数,确定孔隙率为 0.83、UCL 为 5 毫米、流速为 0.02 米/秒的情况为最佳设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信