Ping Zhang , Jing Lv , Cuihong Ge , Bo Yu , Yang Qiu , Aoji Qin , Zhu Ai , Zhehao Wu , Liming Nie , Zhiming Xiang
{"title":"Quantitative evaluation of microenvironmental changes and efficacy of cupping therapy under different pressures based on photoacoustic imaging","authors":"Ping Zhang , Jing Lv , Cuihong Ge , Bo Yu , Yang Qiu , Aoji Qin , Zhu Ai , Zhehao Wu , Liming Nie , Zhiming Xiang","doi":"10.1016/j.pacs.2024.100661","DOIUrl":null,"url":null,"abstract":"<div><div>Cupping therapy, a traditional Chinese medicinal practice, has been subjected to scientific scrutiny to validate its effects on local tissue microenvironments. This study provides a quantitative assessment of cupping therapy at different negative pressures using photoacoustic imaging. Low-pressure cupping (-20 kPa) significantly improved local blood circulation, evidenced by increased hemoglobin oxygen saturation and vessel dilation that normalized within two hours. In contrast, high-pressure cupping (-30 kPa) led to capillary rupture, bleeding, and tissue edema, similar to the clinical presentation of cupping bruises. Additionally, our research unveiled that −20 kPa cupping expedited the clearance of indocyanine green dye, suggesting enhanced lymphatic drainage, which was further supported by fluorescence imaging. This indicates a potential mechanism for cupping's pain relief effects. Moreover, cupping showed promising results in improving sepsis outcomes in mice, potentially due to its anti-inflammatory properties. This study establishes a foundation for the objective evaluation of cupping therapy, demonstrating that low-pressure cupping is effective in promoting blood and lymphatic flow while minimizing tissue damage, thereby offering a safer therapeutic approach.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"40 ","pages":"Article 100661"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000788","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cupping therapy, a traditional Chinese medicinal practice, has been subjected to scientific scrutiny to validate its effects on local tissue microenvironments. This study provides a quantitative assessment of cupping therapy at different negative pressures using photoacoustic imaging. Low-pressure cupping (-20 kPa) significantly improved local blood circulation, evidenced by increased hemoglobin oxygen saturation and vessel dilation that normalized within two hours. In contrast, high-pressure cupping (-30 kPa) led to capillary rupture, bleeding, and tissue edema, similar to the clinical presentation of cupping bruises. Additionally, our research unveiled that −20 kPa cupping expedited the clearance of indocyanine green dye, suggesting enhanced lymphatic drainage, which was further supported by fluorescence imaging. This indicates a potential mechanism for cupping's pain relief effects. Moreover, cupping showed promising results in improving sepsis outcomes in mice, potentially due to its anti-inflammatory properties. This study establishes a foundation for the objective evaluation of cupping therapy, demonstrating that low-pressure cupping is effective in promoting blood and lymphatic flow while minimizing tissue damage, thereby offering a safer therapeutic approach.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.