Propagation dynamics of the lattice Leslie-Gower predator-prey system in shifting habitats

IF 1.2 3区 数学 Q1 MATHEMATICS
Fei-Ying Yang, Qian Zhao
{"title":"Propagation dynamics of the lattice Leslie-Gower predator-prey system in shifting habitats","authors":"Fei-Ying Yang,&nbsp;Qian Zhao","doi":"10.1016/j.jmaa.2024.129075","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the propagation dynamics of a discrete diffusive Leslie-Gower predator-prey system in shifting habitats. First, we discuss the spreading properties of the corresponding Cauchy problem depending on the range of the shifting speed which is identified respectively by (i) extinction of two species; (ii) only one species surviving; (iii) persistence of two species. Then, we give the existence of two types of forced waves, that is, I type forced waves invading the state where only one species exists in supercritical case and critical case, and II type forced waves invading coexistence state for any speed.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129075"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009971","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the propagation dynamics of a discrete diffusive Leslie-Gower predator-prey system in shifting habitats. First, we discuss the spreading properties of the corresponding Cauchy problem depending on the range of the shifting speed which is identified respectively by (i) extinction of two species; (ii) only one species surviving; (iii) persistence of two species. Then, we give the existence of two types of forced waves, that is, I type forced waves invading the state where only one species exists in supercritical case and critical case, and II type forced waves invading coexistence state for any speed.
网格莱斯利-高尔捕食者-猎物系统在变迁生境中的传播动力学
在本文中,我们关注的是一个离散扩散的莱斯利-高尔捕食-猎物系统在移动栖息地中的传播动力学。首先,我们讨论了相应 Cauchy 问题的传播特性,它取决于移动速度的范围,移动速度的范围分别为:(i) 两个物种灭绝;(ii) 只有一个物种存活;(iii) 两个物种持续存在。然后,我们给出了两类强迫波的存在,即在超临界情况和临界情况下入侵只有一种物种存在状态的 I 类强迫波,以及在任意速度下入侵共存状态的 II 类强迫波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信