Local boundedness for vectorial minimizers of non-uniform variational integrals

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhang Aiping, Feng Zesheng, Gao Hongya
{"title":"Local boundedness for vectorial minimizers of non-uniform variational integrals","authors":"Zhang Aiping,&nbsp;Feng Zesheng,&nbsp;Gao Hongya","doi":"10.1016/j.jmaa.2024.129074","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the local boundedness of vectorial local minimizers for a specific class of integral functionals with rank-one convex integrands under appropriate structural assumptions. Our method adapts the renowned De Giorgi‘s iteration technique and employs a suitable Caccioppoli-type inequality. Our findings are applicable to polyconvex integrals<span><span><span><math><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>{</mo><munderover><mo>∑</mo><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>}</mo></mrow><mi>d</mi><mi>x</mi></math></span></span></span> with suitable <span><math><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>,</mo><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129074"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400996X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the local boundedness of vectorial local minimizers for a specific class of integral functionals with rank-one convex integrands under appropriate structural assumptions. Our method adapts the renowned De Giorgi‘s iteration technique and employs a suitable Caccioppoli-type inequality. Our findings are applicable to polyconvex integralsΩ{α=1Nλ(x)|Duα|p+μ(x)|Du|r}dx with suitable λ(x),μ(x)>0 and p,r>1.
非均匀变分积分的向量最小值的局部有界性
我们在适当的结构假设下,为一类具有秩一凸积分的特定积分函数建立了向量局部最小值的局部有界性。我们的方法改编了著名的 De Giorgi 迭代技术,并采用了合适的 Caccioppoli 型不等式。我们的发现适用于具有合适的 λ(x),μ(x)>0 和 p,r>1 的多凸积分∫Ω{∑α=1Nλ(x)|Duα|p+μ(x)|Du|r}dx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信