Cristina M. Troya , Lucas W. Mendes , Marileide M. Costa , Everlon Cid Rigobelo , Ludwig H. Pfenning , Victor Hugo Buttros , Joyce Dória
{"title":"Genetic resistance to Fusarium wilt shapes rhizospheric beneficial microbiota in four banana cultivars","authors":"Cristina M. Troya , Lucas W. Mendes , Marileide M. Costa , Everlon Cid Rigobelo , Ludwig H. Pfenning , Victor Hugo Buttros , Joyce Dória","doi":"10.1016/j.rhisph.2024.100988","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the dynamics of bacterial communities in the bulk soil, rhizosphere, and endosphere of banana plants, focusing on variations among cultivars with differing levels of genetic resistance to <em>Fusarium</em> wilt. Four banana cultivars were examined: one resistant (P), one moderately susceptible (PT), and two susceptible (W and M). Using 16S rDNA sequencing, we analyzed the bacterial community structures in these habitats. Results showed significant differences in bacterial communities across the three habitats and among the cultivars, with the endosphere communities being the most distinct. The rhizosphere and bulk soil communities exhibited more similarities, likely due to the soil microbiome's influence on the rhizosphere. Resistant cultivars (PT and P) displayed unique bacterial communities, with notable taxa such as <em>Burkholderia</em>, <em>Leifsonia</em>, and <em>Marmoricola</em> in the rhizosphere, known for their antagonistic properties against <em>Fusarium oxysporum</em>. Although the most abundant taxa are not the only ones influencing disease suppression, the susceptible cultivars (W and M) were dominated by genera such as <em>Reyranella</em> and <em>Mucilaginibacter</em>, which are yet to be described as potential biocontrol agents against <em>Fusarium</em> wilt. The endosphere of resistant cultivars also featured beneficial genera like <em>Amycolatopsis</em> and <em>Achromobacter</em>, known for their roles in plant growth promotion and disease resistance. The findings underscore the importance of plant genotype and soil type in shaping the rhizosphere microbiome, with specific microbial taxa associated with resistance to <em>Fusarium</em>. These insights suggest a potential for developing targeted microbial-based strategies to enhance disease resistance and overall plant health. The study highlights key microbial players that could be leveraged for biological control and improved management of <em>Fusarium</em> wilt in banana cultivation. This research advances our understanding of plant-microbe interactions and their implications for sustainable agriculture, particularly in combating soilborne pathogens.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100988"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001435","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the dynamics of bacterial communities in the bulk soil, rhizosphere, and endosphere of banana plants, focusing on variations among cultivars with differing levels of genetic resistance to Fusarium wilt. Four banana cultivars were examined: one resistant (P), one moderately susceptible (PT), and two susceptible (W and M). Using 16S rDNA sequencing, we analyzed the bacterial community structures in these habitats. Results showed significant differences in bacterial communities across the three habitats and among the cultivars, with the endosphere communities being the most distinct. The rhizosphere and bulk soil communities exhibited more similarities, likely due to the soil microbiome's influence on the rhizosphere. Resistant cultivars (PT and P) displayed unique bacterial communities, with notable taxa such as Burkholderia, Leifsonia, and Marmoricola in the rhizosphere, known for their antagonistic properties against Fusarium oxysporum. Although the most abundant taxa are not the only ones influencing disease suppression, the susceptible cultivars (W and M) were dominated by genera such as Reyranella and Mucilaginibacter, which are yet to be described as potential biocontrol agents against Fusarium wilt. The endosphere of resistant cultivars also featured beneficial genera like Amycolatopsis and Achromobacter, known for their roles in plant growth promotion and disease resistance. The findings underscore the importance of plant genotype and soil type in shaping the rhizosphere microbiome, with specific microbial taxa associated with resistance to Fusarium. These insights suggest a potential for developing targeted microbial-based strategies to enhance disease resistance and overall plant health. The study highlights key microbial players that could be leveraged for biological control and improved management of Fusarium wilt in banana cultivation. This research advances our understanding of plant-microbe interactions and their implications for sustainable agriculture, particularly in combating soilborne pathogens.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.