{"title":"Effect of mooring system stiffness on floating offshore wind turbine loads in a passively self-adjusting floating wind farm","authors":"Mohammad Youssef Mahfouz, Po Wen Cheng","doi":"10.1016/j.renene.2024.121823","DOIUrl":null,"url":null,"abstract":"<div><div>Floating offshore wind turbines (FOWTs) offer a way to reduce wake losses in floating wind farms (FWFs) by using less stiff mooring systems (MS) that allow for self-adjusting layouts. These layouts enable turbines to reposition based on wind speed and direction, improving energy production. This study analyzes three self-adjusting FWF layouts with different MS stiffness and compares the resulting FOWT loads to a baseline FWF with a standard MS design. Our results show that reduced MS stiffness increases loads, especially at the tower base, and yaw stiffness must be maintained above a certain threshold. This is especially important in above-rated wind speeds, where increased aerodynamic yaw moments occur. A self-adjusting layout that adheres to yaw stiffness constraints showed a 1.5% increase in annual energy production (AEP) and a 4% reduction in MS costs using dynamic wake models.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121823"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018913","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Floating offshore wind turbines (FOWTs) offer a way to reduce wake losses in floating wind farms (FWFs) by using less stiff mooring systems (MS) that allow for self-adjusting layouts. These layouts enable turbines to reposition based on wind speed and direction, improving energy production. This study analyzes three self-adjusting FWF layouts with different MS stiffness and compares the resulting FOWT loads to a baseline FWF with a standard MS design. Our results show that reduced MS stiffness increases loads, especially at the tower base, and yaw stiffness must be maintained above a certain threshold. This is especially important in above-rated wind speeds, where increased aerodynamic yaw moments occur. A self-adjusting layout that adheres to yaw stiffness constraints showed a 1.5% increase in annual energy production (AEP) and a 4% reduction in MS costs using dynamic wake models.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.