{"title":"Observation of anomalous Nernst effect in non-collinear antiferromagnets","authors":"Asif Ullah, Thanh-Huong Thi Nguyen, Sanghoon Kim","doi":"10.1016/j.cap.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>The field of spin caloritronics, which explores the interplay between spin current and thermal effects, is a promising path for new energy-efficient-electronic devices. However, current thermoelectric technologies are limited by conventional material choices and device designs. Antiferromagnetic materials, with their unique spin structure and magnetic characteristics, provide new opportunities for enhanced thermoelectric performance through spin-dependent effects. This review covers origin and measurement methodologies of anomalous Nernst effect, focusing on non-collinear antiferromagnets. By presenting insights into the relationship between electronic structure and thermoelectric performance as well as their practical measurements, this review aims to pave the way for developing AFM-based thermoelectric devices in advanced energy technologies.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"70 ","pages":"Pages 51-60"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002499","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The field of spin caloritronics, which explores the interplay between spin current and thermal effects, is a promising path for new energy-efficient-electronic devices. However, current thermoelectric technologies are limited by conventional material choices and device designs. Antiferromagnetic materials, with their unique spin structure and magnetic characteristics, provide new opportunities for enhanced thermoelectric performance through spin-dependent effects. This review covers origin and measurement methodologies of anomalous Nernst effect, focusing on non-collinear antiferromagnets. By presenting insights into the relationship between electronic structure and thermoelectric performance as well as their practical measurements, this review aims to pave the way for developing AFM-based thermoelectric devices in advanced energy technologies.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.