{"title":"Development of an efficient cross-scale model for working fluid selection of Rankine-based Carnot battery based on group contribution method","authors":"Hongna Qiao, Bin Yang, Xiaohui Yu","doi":"10.1016/j.renene.2024.121961","DOIUrl":null,"url":null,"abstract":"<div><div>Rankine-based Carnot battery is promising system with outstanding performances in addressing the challenges of local consumption of renewable energy generation and utilization of low-grade waste heat. A suitable working fluid is fundamental to the Rankine-based Carnot battery cycle and profoundly influences system performance. However, studies on working fluid selection for the Rankine-based Carnot battery are limited to a predefined database. This approach fails to study or design novel working fluids. Therefore, the nine molecular groups used as a set of molecular groups in this paper can cover most organic working fluids in Rankine-based thermodynamic cycle systems. Developing an accurate cross-scale model based on the group contribution method is used in working fluid selection for Rankine-based Carnot battery. Meanwhile, for the sake of testing the accuracy of the proposed model, twenty-one promising organic working fluids were selected to be compared and analyzed with the results calculated by the REFPROP under the typical working conditions of the Rankine-based Carnot battery. The results show that the absolute average relative deviation of the boiling temperature prediction using the multiple linear regression model proposed in this study is only 3.9 %, while the absolute average relative deviation of the critical temperature based on the proposed boiling temperature model is 5 %. Finally, the present work demonstrates excellent accuracy in predicting the thermodynamic performance of this system. The absolute average relative deviation of the coefficient of performance, generation efficiency and power-to-power-efficiency is 4.6 %, 2.0 %, and 6.4 %, respectively.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121961"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124020299","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Rankine-based Carnot battery is promising system with outstanding performances in addressing the challenges of local consumption of renewable energy generation and utilization of low-grade waste heat. A suitable working fluid is fundamental to the Rankine-based Carnot battery cycle and profoundly influences system performance. However, studies on working fluid selection for the Rankine-based Carnot battery are limited to a predefined database. This approach fails to study or design novel working fluids. Therefore, the nine molecular groups used as a set of molecular groups in this paper can cover most organic working fluids in Rankine-based thermodynamic cycle systems. Developing an accurate cross-scale model based on the group contribution method is used in working fluid selection for Rankine-based Carnot battery. Meanwhile, for the sake of testing the accuracy of the proposed model, twenty-one promising organic working fluids were selected to be compared and analyzed with the results calculated by the REFPROP under the typical working conditions of the Rankine-based Carnot battery. The results show that the absolute average relative deviation of the boiling temperature prediction using the multiple linear regression model proposed in this study is only 3.9 %, while the absolute average relative deviation of the critical temperature based on the proposed boiling temperature model is 5 %. Finally, the present work demonstrates excellent accuracy in predicting the thermodynamic performance of this system. The absolute average relative deviation of the coefficient of performance, generation efficiency and power-to-power-efficiency is 4.6 %, 2.0 %, and 6.4 %, respectively.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.