Multi-objective optimization of cold plate with spoiler for battery thermal management system using whale optimization algorithm

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Zeyuan Peng , Jianxun Huang , Junshuai Lv , Jiedong Ye
{"title":"Multi-objective optimization of cold plate with spoiler for battery thermal management system using whale optimization algorithm","authors":"Zeyuan Peng ,&nbsp;Jianxun Huang ,&nbsp;Junshuai Lv ,&nbsp;Jiedong Ye","doi":"10.1016/j.applthermaleng.2024.124974","DOIUrl":null,"url":null,"abstract":"<div><div>With the high population of electric vehicle adoption, precisely controlling the temperature of the battery modules is essential to provide long-term sustainability and reliability. In the amount of battery thermal management techniques, adding spoilers is a promising method for enhancing the heat transfer performance of cold plates, but the performance of the system is highly sensitive to different geometry parameters. In this study, heat transfer performance for the cold plates battery thermal management system with a tesla flow channel was numerically and experimentally investigated with a focus on the geometry parameters, including spoiler length (<em>L</em>), mounting position (<em>X</em>), and coolant flow rate (<em>ν</em>). A modified heuristic-based swarm intelligence multi-objective optimization algorithm is proposed to obtain the optimal spoiler parameters. The results show the maximum temperature of the battery module is reduced by 3.12 ℃ after adding the spoiler. The optimization spoilers maintain the maximum temperature of the battery module below 30.9 ℃, and the best spoiler parameters as <em>L</em> = 5.10 mm, <em>X</em>  = 14.3 mm, and <em>v</em> = 1.186 × 10<sup>-2</sup> m/s. This study uses a heuristic-based swarm intelligence multi-objective optimization algorithm to investigate the optimization process of the spoiler structural parameters and provides guidance for the application of advanced multi-objective optimization algorithms in cold plate design.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"260 ","pages":"Article 124974"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124026425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the high population of electric vehicle adoption, precisely controlling the temperature of the battery modules is essential to provide long-term sustainability and reliability. In the amount of battery thermal management techniques, adding spoilers is a promising method for enhancing the heat transfer performance of cold plates, but the performance of the system is highly sensitive to different geometry parameters. In this study, heat transfer performance for the cold plates battery thermal management system with a tesla flow channel was numerically and experimentally investigated with a focus on the geometry parameters, including spoiler length (L), mounting position (X), and coolant flow rate (ν). A modified heuristic-based swarm intelligence multi-objective optimization algorithm is proposed to obtain the optimal spoiler parameters. The results show the maximum temperature of the battery module is reduced by 3.12 ℃ after adding the spoiler. The optimization spoilers maintain the maximum temperature of the battery module below 30.9 ℃, and the best spoiler parameters as L = 5.10 mm, X  = 14.3 mm, and v = 1.186 × 10-2 m/s. This study uses a heuristic-based swarm intelligence multi-objective optimization algorithm to investigate the optimization process of the spoiler structural parameters and provides guidance for the application of advanced multi-objective optimization algorithms in cold plate design.

Abstract Image

使用鲸鱼优化算法对电池热管理系统中带有扰流板的冷板进行多目标优化
随着电动汽车的普及,精确控制电池模块的温度对于提供长期可持续性和可靠性至关重要。在大量的电池热管理技术中,添加扰流板是提高冷板传热性能的一种很有前途的方法,但该系统的性能对不同的几何参数非常敏感。本研究对带有特斯拉流道的冷板电池热管理系统的传热性能进行了数值和实验研究,重点研究了扰流板长度(L)、安装位置(X)和冷却剂流速(ν)等几何参数。为获得最佳扰流板参数,提出了一种基于启发式的群智能多目标优化算法。结果表明,加装扰流板后,电池模块的最高温度降低了 3.12 ℃。优化后的扰流板使电池模块的最高温度保持在 30.9 ℃ 以下,最佳扰流板参数为 L = 5.10 mm,X = 14.3 mm,v = 1.186 × 10-2 m/s。本研究采用基于启发式的蜂群智能多目标优化算法研究了扰流板结构参数的优化过程,为先进的多目标优化算法在冷板设计中的应用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信