Silver- and gold-catalyzed azide−alkyne cycloaddition by functionalized NHC-based polynuclear catalysts: Computational investigation and mechanistic insights

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ali A Khairbek , Mohammad Abd Al-Hakim Badawi , Abdullah Yahya Abdullah Alzahrani , Rajimon KJ , Renjith Thomas
{"title":"Silver- and gold-catalyzed azide−alkyne cycloaddition by functionalized NHC-based polynuclear catalysts: Computational investigation and mechanistic insights","authors":"Ali A Khairbek ,&nbsp;Mohammad Abd Al-Hakim Badawi ,&nbsp;Abdullah Yahya Abdullah Alzahrani ,&nbsp;Rajimon KJ ,&nbsp;Renjith Thomas","doi":"10.1016/j.mcat.2024.114708","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated the catalytic efficiency of Au(I), Ag(I), and Cu(I) complexes in the azide‒alkyne cycloaddition (<strong>AAC</strong>) reaction through density functional theory (<strong>DFT</strong>) calculations. Cu(I) complexes exhibit superior catalytic performance, with lower energy barriers (8.8 kcal/mol) and a favorable Gibbs free energy of -0.9 kcal/mol in the key cycloaddition step, significantly outperforming Ag and Au complexes. Structural analysis revealed that shorter M−C bond lengths in the Cu complex contributed to increased stability. Additionally, the copper complex has a more negative Gibbs free energy for the formed metallacycle, indicating a thermodynamically favorable reaction pathway. Noncovalent interaction (NCI) and reduced density gradient (RDG) analyses of the Cu, Ag, and Au systems highlighted distinct interaction patterns influencing the reactivity. Furthermore, electron localization function (ELF) and localized orbital locator (LOL) analyses revealed bonding characteristics in those complexes. This study offers valuable insights into the mechanistic differences among Au(I), Ag(I), and Cu(I) complexes, paving the way for future research on enhancing the catalytic activity of copper, silver and gold complexes through ligand modification.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114708"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008903","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the catalytic efficiency of Au(I), Ag(I), and Cu(I) complexes in the azide‒alkyne cycloaddition (AAC) reaction through density functional theory (DFT) calculations. Cu(I) complexes exhibit superior catalytic performance, with lower energy barriers (8.8 kcal/mol) and a favorable Gibbs free energy of -0.9 kcal/mol in the key cycloaddition step, significantly outperforming Ag and Au complexes. Structural analysis revealed that shorter M−C bond lengths in the Cu complex contributed to increased stability. Additionally, the copper complex has a more negative Gibbs free energy for the formed metallacycle, indicating a thermodynamically favorable reaction pathway. Noncovalent interaction (NCI) and reduced density gradient (RDG) analyses of the Cu, Ag, and Au systems highlighted distinct interaction patterns influencing the reactivity. Furthermore, electron localization function (ELF) and localized orbital locator (LOL) analyses revealed bonding characteristics in those complexes. This study offers valuable insights into the mechanistic differences among Au(I), Ag(I), and Cu(I) complexes, paving the way for future research on enhancing the catalytic activity of copper, silver and gold complexes through ligand modification.

Abstract Image

功能化 NHC 基多核催化剂催化的叠氮-炔环加成反应:计算研究和机理认识
本研究通过密度泛函理论(DFT)计算,评估了 Au(I)、Ag(I) 和 Cu(I) 复合物在叠氮-炔环加成反应(AAC)中的催化效率。Cu(I)配合物表现出卓越的催化性能,在关键的环加成反应步骤中,能垒较低(8.8 kcal/mol),吉布斯自由能为-0.9 kcal/mol,明显优于Ag和Au配合物。结构分析表明,铜配合物中较短的 M-C 键长度有助于提高稳定性。此外,铜配合物形成的金属环的吉布斯自由能为负值,这表明反应途径在热力学上是有利的。对铜、银和金体系进行的非共价相互作用(NCI)和还原密度梯度(RDG)分析凸显了影响反应活性的不同相互作用模式。此外,电子定位功能(ELF)和局部轨道定位器(LOL)分析揭示了这些复合物的成键特征。这项研究为了解 Au(I)、Ag(I) 和 Cu(I) 复合物之间的机理差异提供了宝贵的见解,为今后研究通过配体修饰提高铜、银和金复合物的催化活性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信