Crack initiation, small crack growth, and stress intensity factor in the very high cycle fatigue (VHCF) of wire arc additive manufactured (WAAM) nickel aluminum bronze (NAB)

IF 4.7 2区 工程技术 Q1 MECHANICS
MohammadBagher Mahtabi , Mojtaba Roshan , Shawkat I. Shakil , Andrea Tridello , Davide S. Paolino , Wiktor Bednarczyk , Meysam Haghshenas
{"title":"Crack initiation, small crack growth, and stress intensity factor in the very high cycle fatigue (VHCF) of wire arc additive manufactured (WAAM) nickel aluminum bronze (NAB)","authors":"MohammadBagher Mahtabi ,&nbsp;Mojtaba Roshan ,&nbsp;Shawkat I. Shakil ,&nbsp;Andrea Tridello ,&nbsp;Davide S. Paolino ,&nbsp;Wiktor Bednarczyk ,&nbsp;Meysam Haghshenas","doi":"10.1016/j.engfracmech.2024.110671","DOIUrl":null,"url":null,"abstract":"<div><div>Wire arc additive manufacturing (WAAM) has emerged as a favorable method for industrial manufacturing due to its high productivity and cost-effectiveness in producing large metal components. This study employs a fracture mechanics approach to investigate the very high cycle fatigue (VHCF) behavior of WAAM nickel aluminum bronze (NAB) alloy, a material prized for its high strength and corrosion resistance, making it ideal for marine and naval applications. WAAM NAB specimens were fabricated using optimized process parameters, followed by annealing to minimize residual stresses and enhance mechanical properties. Ultrasonic fatigue testing (USF) at 20 kHz was utilized to evaluate fatigue life up to 10<sup>9</sup> cycles. Advanced fractography analysis enabled the quantification of small crack growth, facilitating fatigue life prediction through detailed assessments of stress intensity factors (SIF) at critical crack initiation sites. The study also investigates the influence of WAAM-induced volumetric defects on crack initiation and propagation in the VHCF regime. A comparison with conventional S-N data (limited to 5 × 10<sup>6</sup> cycles) revealed a distinct step in the S-N curve, indicating a transition to secondary fatigue strength when moving from the high cycle fatigue (HCF) to the VHCF domain. This research offers valuable insights into the long-term fatigue durability of WAAM NAB, reinforcing its potential for high-frequency cyclic load applications in marine and industrial environments.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"313 ","pages":"Article 110671"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424008348","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wire arc additive manufacturing (WAAM) has emerged as a favorable method for industrial manufacturing due to its high productivity and cost-effectiveness in producing large metal components. This study employs a fracture mechanics approach to investigate the very high cycle fatigue (VHCF) behavior of WAAM nickel aluminum bronze (NAB) alloy, a material prized for its high strength and corrosion resistance, making it ideal for marine and naval applications. WAAM NAB specimens were fabricated using optimized process parameters, followed by annealing to minimize residual stresses and enhance mechanical properties. Ultrasonic fatigue testing (USF) at 20 kHz was utilized to evaluate fatigue life up to 109 cycles. Advanced fractography analysis enabled the quantification of small crack growth, facilitating fatigue life prediction through detailed assessments of stress intensity factors (SIF) at critical crack initiation sites. The study also investigates the influence of WAAM-induced volumetric defects on crack initiation and propagation in the VHCF regime. A comparison with conventional S-N data (limited to 5 × 106 cycles) revealed a distinct step in the S-N curve, indicating a transition to secondary fatigue strength when moving from the high cycle fatigue (HCF) to the VHCF domain. This research offers valuable insights into the long-term fatigue durability of WAAM NAB, reinforcing its potential for high-frequency cyclic load applications in marine and industrial environments.
线弧添加剂制造(WAAM)镍铝青铜(NAB)超高循环疲劳(VHCF)中的裂纹起始、小裂纹增长和应力强度因子
线弧增材制造(WAAM)具有生产大型金属部件的高生产率和成本效益,已成为工业制造的一种有利方法。本研究采用断裂力学方法来研究 WAAM 镍铝青铜 (NAB) 合金的超高循环疲劳 (VHCF) 行为,这种材料因其高强度和耐腐蚀性而备受青睐,是海洋和舰船应用的理想材料。WAAM NAB 试样采用优化的工艺参数制造,然后进行退火处理,以最大限度地减少残余应力并提高机械性能。利用频率为 20 kHz 的超声波疲劳测试 (USF) 来评估高达 109 次循环的疲劳寿命。通过对关键裂纹起始点的应力强度因子(SIF)进行详细评估,先进的碎裂图分析实现了小裂纹生长的量化,从而有助于疲劳寿命预测。研究还调查了 WAAM 引起的体积缺陷对 VHCF 状态下裂纹萌发和扩展的影响。与传统的 S-N 数据(仅限于 5 × 106 个循环)进行比较后发现,S-N 曲线上出现了一个明显的阶梯,表明从高循环疲劳 (HCF) 到 VHCF 领域时,向次级疲劳强度过渡。这项研究为了解 WAAM NAB 的长期疲劳耐久性提供了宝贵的见解,增强了其在海洋和工业环境中高频循环负载应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信