Data-driven strategies to optimise Ma’aden Barrick Copper Company (MBCC) flotation circuit − The power of visualisation and machine learning in data mining-

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL
T. Ncube , P. Olawoore , P. Maphosa , S. Mogashoa , F. AlJohani , M. Swanepoel
{"title":"Data-driven strategies to optimise Ma’aden Barrick Copper Company (MBCC) flotation circuit − The power of visualisation and machine learning in data mining-","authors":"T. Ncube ,&nbsp;P. Olawoore ,&nbsp;P. Maphosa ,&nbsp;S. Mogashoa ,&nbsp;F. AlJohani ,&nbsp;M. Swanepoel","doi":"10.1016/j.mineng.2024.109128","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a case study demonstrating the application of Optimaviz, an advanced data analytics platform, in addressing the challenges of flotation optimization in the mining industry. The study utilizes historical data from the Jabal Sayid underground copper mine, operated by Ma’aden Barrick Copper Company (MBCC), a joint venture between Ma’aden and Barrick Corporations. Our findings reveal that maintaining cyclone feed slurry percentage solids within the range of 65–71 wt% is crucial for achieving high plant performance (rougher tails copper grade &lt; 0.15 wt% and combined concentrate grade &gt; 24 wt%), with deviations from this prescribed range resulting in a significant decrease in performance. Additionally, we observe the impact of the first concentrate grade (rougher concentrate grade) on overall plant performance, requiring first concentrate grade to be above 26 wt% to achieve high performance, highlighting the importance of the efficiency of the first three rougher cells on the overall plant performance. Furthermore, the study underscores the significance of the balance of power between the SAG mill and Ball mill in achieving a finer rougher feed size distribution that is required to promote flotation performance. This study demonstrates how Optimaviz can be used to effectively optimize mineral processing circuits, providing process engineers and metallurgists with a robust tool to derive actionable insights and enhance plant performance without the need for coding knowledge.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"221 ","pages":"Article 109128"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524005570","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a case study demonstrating the application of Optimaviz, an advanced data analytics platform, in addressing the challenges of flotation optimization in the mining industry. The study utilizes historical data from the Jabal Sayid underground copper mine, operated by Ma’aden Barrick Copper Company (MBCC), a joint venture between Ma’aden and Barrick Corporations. Our findings reveal that maintaining cyclone feed slurry percentage solids within the range of 65–71 wt% is crucial for achieving high plant performance (rougher tails copper grade < 0.15 wt% and combined concentrate grade > 24 wt%), with deviations from this prescribed range resulting in a significant decrease in performance. Additionally, we observe the impact of the first concentrate grade (rougher concentrate grade) on overall plant performance, requiring first concentrate grade to be above 26 wt% to achieve high performance, highlighting the importance of the efficiency of the first three rougher cells on the overall plant performance. Furthermore, the study underscores the significance of the balance of power between the SAG mill and Ball mill in achieving a finer rougher feed size distribution that is required to promote flotation performance. This study demonstrates how Optimaviz can be used to effectively optimize mineral processing circuits, providing process engineers and metallurgists with a robust tool to derive actionable insights and enhance plant performance without the need for coding knowledge.
优化马阿登巴里克铜业公司(MBCC)浮选回路的数据驱动战略 - 数据挖掘中可视化和机器学习的力量
在这项工作中,我们介绍了一个案例研究,展示了 Optimaviz(一种先进的数据分析平台)在应对采矿业浮选优化挑战中的应用。这项研究利用了 Jabal Sayid 地下铜矿的历史数据,该铜矿由 Ma'aden Barrick Copper Company(MBCC)运营,MBCC 是 Ma'aden 和 Barrick Corporations 的合资企业。我们的研究结果表明,将旋流器给矿浆的固体百分比保持在 65-71 wt% 的范围内对于实现高设备性能(粗尾铜品位 < 0.15 wt%,精矿综合品位 > 24 wt%)至关重要,偏离这一规定范围会导致性能大幅下降。此外,我们还观察到第一精矿品位(粗精矿品位)对整个选矿厂性能的影响,要求第一精矿品位高于 26 wt%,才能实现高性能,这突出了前三个粗选电池的效率对整个选矿厂性能的重要性。此外,该研究还强调了 SAG 磨机和球磨机之间的功率平衡在实现更细的粗选给矿粒度分布方面的重要性,而这正是提高浮选性能所必需的。这项研究展示了 Optimaviz 如何用于有效优化矿物加工回路,为工艺工程师和冶金学家提供了一个强大的工具,使他们无需编码知识即可获得可行的见解并提高工厂性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信