Modified Fractional Power Series Method for solving fractional partial differential equations

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Isaac Addai, Benedict Barnes, Isaac Kwame Dontwi, Kwaku Forkuoh Darkwah
{"title":"Modified Fractional Power Series Method for solving fractional partial differential equations","authors":"Isaac Addai,&nbsp;Benedict Barnes,&nbsp;Isaac Kwame Dontwi,&nbsp;Kwaku Forkuoh Darkwah","doi":"10.1016/j.sciaf.2024.e02467","DOIUrl":null,"url":null,"abstract":"<div><div>The literature revealed that the Fractional Power Series Method (FPSM), which uses the Mittag-Leffler function in one parameter, has been gainfully applied in obtaining the solutions of fractional partial differential equations (FPDEs) in one dimension. However, the solutions in the multi-dimensional space have not been explored by researchers across the globe. The solutions of the FPDEs are feasible with the involvement of parameter <span><math><mi>α</mi></math></span> in the Mittag-Leffler function. However, the FPSM, which uses the Mittag-Leffler function in two parameters, has not been considered by researchers. Incorporating two parameters, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, in the Mittag-Leffler function of the FPSM is beyond reasonable doubt; it provides the continuum solution of the FPDEs and also yields more consistent and fast convergence of the solution in Holder’s spaces compared to the FPSM with the Mittag-Leffler function in one parameter. The FPSM is extended by replacing the Mittag-Leffler function in one parameter with the Mittag-Leffler function in two parameters. Also, the modified FPSM is applied to obtain the solutions of both heat and telegraph equations in multi-dimensions and one-dimension respectively. The solutions obtained by the FPSM with the Mittag-Leffler function in one parameter are compared with the modified FPSM using the Mittag-Leffler function in two parameters.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02467"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624004095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The literature revealed that the Fractional Power Series Method (FPSM), which uses the Mittag-Leffler function in one parameter, has been gainfully applied in obtaining the solutions of fractional partial differential equations (FPDEs) in one dimension. However, the solutions in the multi-dimensional space have not been explored by researchers across the globe. The solutions of the FPDEs are feasible with the involvement of parameter α in the Mittag-Leffler function. However, the FPSM, which uses the Mittag-Leffler function in two parameters, has not been considered by researchers. Incorporating two parameters, α and β, in the Mittag-Leffler function of the FPSM is beyond reasonable doubt; it provides the continuum solution of the FPDEs and also yields more consistent and fast convergence of the solution in Holder’s spaces compared to the FPSM with the Mittag-Leffler function in one parameter. The FPSM is extended by replacing the Mittag-Leffler function in one parameter with the Mittag-Leffler function in two parameters. Also, the modified FPSM is applied to obtain the solutions of both heat and telegraph equations in multi-dimensions and one-dimension respectively. The solutions obtained by the FPSM with the Mittag-Leffler function in one parameter are compared with the modified FPSM using the Mittag-Leffler function in two parameters.
用于求解分数偏微分方程的修正分数幂级数法
文献显示,分数幂级数法(FPSM)使用一个参数中的 Mittag-Leffler 函数,在获得一维分数偏微分方程(FPDE)的解方面得到了有效应用。然而,全球研究人员尚未探索过多维空间中的解。由于 Mittag-Leffler 函数中参数 α 的参与,FPDE 的解是可行的。然而,研究人员尚未考虑使用两个参数的 Mittag-Leffler 函数的 FPSM。在 FPSM 的 Mittag-Leffler 函数中加入两个参数 α 和 β 是毋庸置疑的;它提供了 FPDE 的连续解,而且与使用单参数 Mittag-Leffler 函数的 FPSM 相比,在 Holder 空间中的解更加一致,收敛速度更快。通过用两个参数的 Mittag-Leffler 函数取代一个参数的 Mittag-Leffler 函数,FPSM 得到了扩展。此外,修正后的 FPSM 分别用于求得多维和一维热方程和电报方程的解。将使用一个参数中的 Mittag-Leffler 函数的 FPSM 与使用两个参数中的 Mittag-Leffler 函数的修正 FPSM 所得到的解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信