{"title":"National water use of coal-fired power generation: Hybrid life cycle assessment in China","authors":"Jia-Hai Yuan , Ke-Xin Peng , Hui-Ming Xu , Chang-Hong Zhao , Hao-Nan Zhang","doi":"10.1016/j.accre.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies of water use for coal-fired power generation may have overlooked inter-sectoral impacts in the supply chain. Indeed, to devise effective water conservation strategies during the ongoing energy transition, it is of utmost importance to analyze the sectoral water use structures and flows in the supply chain and identify the sources of water scarcity. Therefore, based on the power sector-split environmentally extended input‒output (EEIO) model and the life cycle assessment (LCA) idea, we comprehensively analyze the nexus between coal-fired power generation and water use from a sectoral perspective. Our findings reveal a complex and diverse water use structure in coal-fired power generation. The technology of production inherently determines the high intensity of water withdrawal, and the close intersectoral linkages, particularly with agriculture, construction, and some industrial sectors, in the production process result in an intricate web of indirect water withdrawal and blue water footprint (WF). Moreover, the grey WF, primarily sourced from coal mining and indirectly tied to tertiary industries, underscores critical areas for attention in water pollution management. Finally, water use in the coal-fired power sector is projected to remain at elevated levels in the short to medium term under various transition strategies. Following an in-depth exploration of the coal-fired power‒water use nexus, the findings can offer new perspectives and specific entry points for sustainable energy development and water resource management.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 5","pages":"Pages 948-962"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001436","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies of water use for coal-fired power generation may have overlooked inter-sectoral impacts in the supply chain. Indeed, to devise effective water conservation strategies during the ongoing energy transition, it is of utmost importance to analyze the sectoral water use structures and flows in the supply chain and identify the sources of water scarcity. Therefore, based on the power sector-split environmentally extended input‒output (EEIO) model and the life cycle assessment (LCA) idea, we comprehensively analyze the nexus between coal-fired power generation and water use from a sectoral perspective. Our findings reveal a complex and diverse water use structure in coal-fired power generation. The technology of production inherently determines the high intensity of water withdrawal, and the close intersectoral linkages, particularly with agriculture, construction, and some industrial sectors, in the production process result in an intricate web of indirect water withdrawal and blue water footprint (WF). Moreover, the grey WF, primarily sourced from coal mining and indirectly tied to tertiary industries, underscores critical areas for attention in water pollution management. Finally, water use in the coal-fired power sector is projected to remain at elevated levels in the short to medium term under various transition strategies. Following an in-depth exploration of the coal-fired power‒water use nexus, the findings can offer new perspectives and specific entry points for sustainable energy development and water resource management.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.