Mixed finite elements of higher-order in elastoplasticity

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Patrick Bammer, Lothar Banz, Andreas Schröder
{"title":"Mixed finite elements of higher-order in elastoplasticity","authors":"Patrick Bammer,&nbsp;Lothar Banz,&nbsp;Andreas Schröder","doi":"10.1016/j.apnum.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper a higher-order mixed finite element method for elastoplasticity with linear kinematic hardening is analyzed. Thereby, the non-differentiability of the involved plasticity functional is resolved by a Lagrange multiplier leading to a three field formulation. The finite element discretization is conforming in the displacement field and the plastic strain but potentially non-conforming in the Lagrange multiplier as its Frobenius norm is only constrained in a certain set of Gauss quadrature points. A discrete inf-sup condition with constant 1 and the well posedness of the discrete mixed problem are shown. Moreover, convergence and guaranteed convergence rates are proved with respect to the mesh size and the polynomial degree, which are optimal for the lowest order case. Numerical experiments underline the theoretical results.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"209 ","pages":"Pages 38-54"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a higher-order mixed finite element method for elastoplasticity with linear kinematic hardening is analyzed. Thereby, the non-differentiability of the involved plasticity functional is resolved by a Lagrange multiplier leading to a three field formulation. The finite element discretization is conforming in the displacement field and the plastic strain but potentially non-conforming in the Lagrange multiplier as its Frobenius norm is only constrained in a certain set of Gauss quadrature points. A discrete inf-sup condition with constant 1 and the well posedness of the discrete mixed problem are shown. Moreover, convergence and guaranteed convergence rates are proved with respect to the mesh size and the polynomial degree, which are optimal for the lowest order case. Numerical experiments underline the theoretical results.
弹塑性中的高阶混合有限元
本文分析了线性运动硬化弹塑性的高阶混合有限元方法。通过拉格朗日乘法器解决了塑性函数的非可分性问题,从而得出了三场公式。有限元离散化符合位移场和塑性应变,但可能不符合拉格朗日乘数,因为其 Frobenius 准则仅受限于特定的高斯正交点。结果表明了常数为 1 的离散 inf-sup 条件和离散混合问题的良好假设性。此外,还证明了与网格大小和多项式度有关的收敛性和保证收敛率,这在最低阶情况下是最优的。数值实验强调了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信