{"title":"A simple and robust method for laboratory-scale preparation of butter","authors":"Sandra Beyer Gregersen , Lise Margrethe Boesgaard , Dionysios D. Neofytos , Mads Eg Andersen , Ulf Andersen , Milena Corredig","doi":"10.3168/jdsc.2024-0571","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to develop a small-scale model system resembling the micro- and meso-structure of butter, namely having a water droplet size distribution and water content close to that of commercially produced butter. Although it is possible to churn cream on a small scale, matching the microstructure of butter is a challenge. A 2-step churning process was introduced with the application of a kitchen mixer. The resulting microstructure was evaluated using confocal laser scanning microscopy. In addition, low-field nuclear magnetic resonance was used to determine the water droplet size distribution. Results demonstrated that a water content of 16% to 19% could be obtained with the proposed procedure, close to the standard water content of 16%. Average water droplet size ranged between 2.5 to 4.3 µm and did not depend on batch-to-batch variations, nor storage-induced differences in the cream. In conclusion, the proposed method could be employed to prepare water-in-oil emulsions with a microstructure similar to that of butter and opens new opportunities for studying microbial growth, flavor release, and texture formation.</div></div>","PeriodicalId":94061,"journal":{"name":"JDS communications","volume":"5 6","pages":"Pages 528-530"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JDS communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666910224001029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to develop a small-scale model system resembling the micro- and meso-structure of butter, namely having a water droplet size distribution and water content close to that of commercially produced butter. Although it is possible to churn cream on a small scale, matching the microstructure of butter is a challenge. A 2-step churning process was introduced with the application of a kitchen mixer. The resulting microstructure was evaluated using confocal laser scanning microscopy. In addition, low-field nuclear magnetic resonance was used to determine the water droplet size distribution. Results demonstrated that a water content of 16% to 19% could be obtained with the proposed procedure, close to the standard water content of 16%. Average water droplet size ranged between 2.5 to 4.3 µm and did not depend on batch-to-batch variations, nor storage-induced differences in the cream. In conclusion, the proposed method could be employed to prepare water-in-oil emulsions with a microstructure similar to that of butter and opens new opportunities for studying microbial growth, flavor release, and texture formation.