Spectropolarimetric Inversion in Four Dimensions with Deep Learning (SPIn4D). I. Overview, Magnetohydrodynamic Modeling, and Stokes Profile Synthesis

Kai E. Yang, 凯 杨, Lucas A. Tarr, Matthias Rempel, S. Curt Dodds, Sarah A. Jaeggli, Peter Sadowski, Thomas A. Schad, Ian Cunnyngham, Jiayi Liu, 嘉奕 刘, Yannik Glaser, Xudong Sun and 旭东 孙
{"title":"Spectropolarimetric Inversion in Four Dimensions with Deep Learning (SPIn4D). I. Overview, Magnetohydrodynamic Modeling, and Stokes Profile Synthesis","authors":"Kai E. Yang, 凯 杨, Lucas A. Tarr, Matthias Rempel, S. Curt Dodds, Sarah A. Jaeggli, Peter Sadowski, Thomas A. Schad, Ian Cunnyngham, Jiayi Liu, 嘉奕 刘, Yannik Glaser, Xudong Sun and 旭东 孙","doi":"10.3847/1538-4357/ad865b","DOIUrl":null,"url":null,"abstract":"The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will provide high-resolution, multiline spectropolarimetric observations that are poised to revolutionize our understanding of the Sun. Given the massive data volume, novel inference techniques are required to unlock its full potential. Here, we provide an overview of our “SPIn4D” project, which aims to develop deep convolutional neural networks (CNNs) for estimating the physical properties of the solar photosphere from DKIST spectropolarimetric observations. We describe the magnetohydrodynamic (MHD) modeling and the Stokes profile synthesis pipeline that produce the simulated output and input data, respectively. These data will be used to train a set of CNNs that can rapidly infer the four-dimensional MHD state vectors by exploiting the spatiotemporally coherent patterns in the Stokes profile time series. Specifically, our radiative MHD model simulates the small-scale dynamo actions that are prevalent in quiet-Sun and plage regions. Six cases with different mean magnetic fields have been explored; each case covers six solar-hours, totaling 109 TB in data volume. The simulation domain covers at least 25 × 25 × 8 Mm, with 16 × 16 × 12 km spatial resolution, extending from the upper convection zone up to the temperature minimum region. The outputs are stored at a 40 s cadence. We forward model the Stokes profile of two sets of Fe i lines at 630 and 1565 nm, which will be simultaneously observed by DKIST and can better constrain the parameter variations along the line of sight. The MHD model output and the synthetic Stokes profiles are publicly available, with 13.7 TB in the initial release.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad865b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will provide high-resolution, multiline spectropolarimetric observations that are poised to revolutionize our understanding of the Sun. Given the massive data volume, novel inference techniques are required to unlock its full potential. Here, we provide an overview of our “SPIn4D” project, which aims to develop deep convolutional neural networks (CNNs) for estimating the physical properties of the solar photosphere from DKIST spectropolarimetric observations. We describe the magnetohydrodynamic (MHD) modeling and the Stokes profile synthesis pipeline that produce the simulated output and input data, respectively. These data will be used to train a set of CNNs that can rapidly infer the four-dimensional MHD state vectors by exploiting the spatiotemporally coherent patterns in the Stokes profile time series. Specifically, our radiative MHD model simulates the small-scale dynamo actions that are prevalent in quiet-Sun and plage regions. Six cases with different mean magnetic fields have been explored; each case covers six solar-hours, totaling 109 TB in data volume. The simulation domain covers at least 25 × 25 × 8 Mm, with 16 × 16 × 12 km spatial resolution, extending from the upper convection zone up to the temperature minimum region. The outputs are stored at a 40 s cadence. We forward model the Stokes profile of two sets of Fe i lines at 630 and 1565 nm, which will be simultaneously observed by DKIST and can better constrain the parameter variations along the line of sight. The MHD model output and the synthetic Stokes profiles are publicly available, with 13.7 TB in the initial release.
深度学习四维光谱反演 (SPIn4D)。I. 概述、磁流体力学建模和斯托克斯剖面合成
美国国家科学基金会的丹尼尔-K-井上太阳望远镜(DKIST)将提供高分辨率、多线光谱测量太阳的观测数据,这将彻底改变我们对太阳的认识。鉴于数据量巨大,我们需要新颖的推理技术来释放其全部潜力。在此,我们将概述我们的 "SPIn4D "项目,该项目旨在开发深度卷积神经网络(CNN),用于从 DKIST 的光谱测向观测数据中估计太阳光层的物理特性。我们将介绍分别产生模拟输出和输入数据的磁流体动力学(MHD)建模和斯托克斯剖面合成管道。这些数据将用于训练一组 CNN,通过利用斯托克斯剖面时间序列中的时空一致性模式,快速推断四维 MHD 状态向量。具体来说,我们的辐射 MHD 模型模拟了静太阳和冥河区域普遍存在的小尺度动力作用。我们探索了六个具有不同平均磁场的案例;每个案例涵盖六个太阳时,数据量总计 109 TB。模拟域至少覆盖 25 × 25 × 8 毫米,空间分辨率为 16 × 16 × 12 千米,从上对流区一直延伸到温度最低区。输出以 40 秒的节奏存储。我们对波长分别为 630 和 1565 nm 的两组铁 i 线的斯托克斯剖面进行了前向建模,DKIST 将同时观测这两组铁 i 线,从而可以更好地约束沿视线方向的参数变化。MHD 模型输出和合成斯托克斯剖面图可公开获取,初始版本为 13.7 TB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信