Subtle Modifications in Interface Configurations of Iron/Cobalt Phthalocyanine-based Electrocatalysts Determine Molecular CO2 Reduction Activities

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinger Xin, Charles B. Musgrave, Jianjun Su, Jiangtong Li, Pei Xiong, Molly Meng-Jung Li, Yun Song, Qianfeng Gu, Qiang Zhang, Yong Liu, Weihua Guo, Le Cheng, Xuefeng Tan, Qiu Jiang, Chuan Xia, Ben Zhong Tang, William A. Goddard, Ruquan Ye
{"title":"Subtle Modifications in Interface Configurations of Iron/Cobalt Phthalocyanine-based Electrocatalysts Determine Molecular CO2 Reduction Activities","authors":"Yinger Xin, Charles B. Musgrave, Jianjun Su, Jiangtong Li, Pei Xiong, Molly Meng-Jung Li, Yun Song, Qianfeng Gu, Qiang Zhang, Yong Liu, Weihua Guo, Le Cheng, Xuefeng Tan, Qiu Jiang, Chuan Xia, Ben Zhong Tang, William A. Goddard, Ruquan Ye","doi":"10.1002/anie.202420286","DOIUrl":null,"url":null,"abstract":"Strain engineering has emerged as a powerful approach in steering the material properties. However, the improved catalytic activity remains poorly understood. Here we report that subtle changes in molecular configurations can profoundly affect, conducively or adversely, the catalytic selectivity and product turnover frequencies (TOFs) of CO2RR. Specifically, introducing molecular curvature in cobalt tetraaminophthalocyanine improves the multielectron CO2RR activity by favorable *CO hydrogenation, attaining methanol Faradaic efficiency up to 52%. In stark contrast, strained iron phthalocyanine exacerbates *CO poisoning, leading to a decreased TOFCO by over 50% at -0.5 VRHE and a rapid current decay. The uniform dispersion is crucial for optimizing electron transfer, while activity is distinctly sensitive to local atomic environment around the active sites. Specifically, local strain either enhances binding to intermediates or poisons the catalytic sites. Our comprehensive analysis elucidates the intricate relationship between molecular structure and CO2RR activities, offering insights into designing efficient heterogeneous molecular interfaces.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"12 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420286","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strain engineering has emerged as a powerful approach in steering the material properties. However, the improved catalytic activity remains poorly understood. Here we report that subtle changes in molecular configurations can profoundly affect, conducively or adversely, the catalytic selectivity and product turnover frequencies (TOFs) of CO2RR. Specifically, introducing molecular curvature in cobalt tetraaminophthalocyanine improves the multielectron CO2RR activity by favorable *CO hydrogenation, attaining methanol Faradaic efficiency up to 52%. In stark contrast, strained iron phthalocyanine exacerbates *CO poisoning, leading to a decreased TOFCO by over 50% at -0.5 VRHE and a rapid current decay. The uniform dispersion is crucial for optimizing electron transfer, while activity is distinctly sensitive to local atomic environment around the active sites. Specifically, local strain either enhances binding to intermediates or poisons the catalytic sites. Our comprehensive analysis elucidates the intricate relationship between molecular structure and CO2RR activities, offering insights into designing efficient heterogeneous molecular interfaces.
铁/钴酞菁基电催化剂界面配置的微妙变化决定二氧化碳分子还原活性
应变工程已成为指导材料特性的有力方法。然而,人们对催化活性的改善仍然知之甚少。在此,我们报告了分子构型的微妙变化会对 CO2RR 的催化选择性和产物周转频率(TOF)产生深远影响,无论是有利还是不利。具体来说,在四氨基酞菁钴中引入分子曲率可通过有利的*CO氢化提高多电子 CO2RR 活性,使甲醇法拉第效率高达 52%。与此形成鲜明对比的是,有应变的铁酞菁会加剧 *CO 中毒,导致 -0.5 VRHE 时 TOFCO 下降 50%以上,电流迅速衰减。均匀分散对优化电子转移至关重要,而活性则对活性位点周围的局部原子环境非常敏感。具体来说,局部应变要么会增强与中间产物的结合,要么会毒害催化位点。我们的综合分析阐明了分子结构与 CO2RR 活性之间错综复杂的关系,为设计高效的异质分子界面提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信