Plasmonic Modulation of Gold Nanoplates on Multiwavelength Emission

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Wei-Yu Jia, Kai-Xin Xie, Rui-Ping Huo, Xiu-Li Song
{"title":"Plasmonic Modulation of Gold Nanoplates on Multiwavelength Emission","authors":"Wei-Yu Jia, Kai-Xin Xie, Rui-Ping Huo, Xiu-Li Song","doi":"10.1021/acs.langmuir.4c02858","DOIUrl":null,"url":null,"abstract":"Plasmonic regulation introduced by metallic nanoparticles is a useful method to improve the detection performance of plasmon-based systems. Herein, we observed a unique enhancement of surface plasmon-coupled emission (SPCE) using plate-shaped plasmonic nanostructures. By assembling Au nanoplates (Au NPLs) via electrostatic adsorption between the Au nanofilm and the quantum dot (QD) layer (630 nm), the fluorescence signal of SPCE was enhanced 90 times more than that of normal SPCE after the conditions were optimized. This enhancement was mainly induced by the intense localized electromagnetic field at the tip of Au NPLs and a novel plasmonic distribution around the “hot-spot” structure between the nanoparticle and Au nanofilm. These effectively mitigated the inherent signal quenching of SPCE and enhanced the emission signal of ultrathin samples on the surface of the NPL-modified Au nanofilm structure. This strategy can be used to improve the detection sensitivity and information integrity of SPCE-based biosensing and bioimaging systems containing ultrathin luminous layers. The different enhancement efficiencies for multiwavelengths were successfully obtained through various emission angles in light of the wavelength resolution of SPCE, thus verifying the existence and importance of energy-matching coupling, and the emission for the fluorophore with low excitation efficiency could also be detected. Benefiting from this, the Au NPL-modulated SPCE system could be a candidate for simultaneous multiwavelength enhancement and high-throughput detection in multicomponent analysis.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"64 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02858","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic regulation introduced by metallic nanoparticles is a useful method to improve the detection performance of plasmon-based systems. Herein, we observed a unique enhancement of surface plasmon-coupled emission (SPCE) using plate-shaped plasmonic nanostructures. By assembling Au nanoplates (Au NPLs) via electrostatic adsorption between the Au nanofilm and the quantum dot (QD) layer (630 nm), the fluorescence signal of SPCE was enhanced 90 times more than that of normal SPCE after the conditions were optimized. This enhancement was mainly induced by the intense localized electromagnetic field at the tip of Au NPLs and a novel plasmonic distribution around the “hot-spot” structure between the nanoparticle and Au nanofilm. These effectively mitigated the inherent signal quenching of SPCE and enhanced the emission signal of ultrathin samples on the surface of the NPL-modified Au nanofilm structure. This strategy can be used to improve the detection sensitivity and information integrity of SPCE-based biosensing and bioimaging systems containing ultrathin luminous layers. The different enhancement efficiencies for multiwavelengths were successfully obtained through various emission angles in light of the wavelength resolution of SPCE, thus verifying the existence and importance of energy-matching coupling, and the emission for the fluorophore with low excitation efficiency could also be detected. Benefiting from this, the Au NPL-modulated SPCE system could be a candidate for simultaneous multiwavelength enhancement and high-throughput detection in multicomponent analysis.

Abstract Image

金纳米板对多波长发射的等离子调制
金属纳米粒子引入的等离子调节是提高等离子系统检测性能的有效方法。在这里,我们利用板状等离子体纳米结构观察到了表面等离子体耦合发射(SPCE)的独特增强效果。通过在金纳米薄膜和量子点(QD)层(630 nm)之间的静电吸附组装金纳米板(Au NPLs),在优化条件后,SPCE 的荧光信号比普通 SPCE 增强了 90 倍。这种增强主要是由于金纳米粒子顶端的强局部电磁场以及纳米粒子和金纳米薄膜之间 "热点 "结构周围的新型等离子体分布。这些都有效缓解了 SPCE 固有的信号淬灭,增强了 NPL 修饰金纳米薄膜结构表面超薄样品的发射信号。这种策略可用于提高含有超薄发光层的基于 SPCE 的生物传感和生物成像系统的检测灵敏度和信息完整性。根据 SPCE 的波长分辨率,通过不同的发射角度,成功地获得了多波长的不同增强效率,从而验证了能量匹配耦合的存在及其重要性,而且还能检测到低激发效率荧光团的发射。因此,金 NPL 调制 SPCE 系统可用于多组分分析中的多波长同步增强和高通量检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
文献相关原料
公司名称
产品信息
阿拉丁
3-mercaptopropionic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信