{"title":"Scale dependencies and self-similar models with wavelet scattering spectra","authors":"Rudy Morel , Gaspar Rochette , Roberto Leonarduzzi , Jean-Philippe Bouchaud , Stéphane Mallat","doi":"10.1016/j.acha.2024.101724","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-scale non-Gaussian time-series having stationary increments appear in a wide range of applications, particularly in finance and physics. We introduce stochastic models that capture intermittency phenomena such as crises or bursts of activity, time reversal asymmetries, and that can be estimated from a single realization of size <em>N</em>. Variations at multiple scales are separated with a wavelet transform. Non-Gaussian properties appear through dependencies of wavelet coefficients across scales. We define maximum entropy models from the joint correlation across time and scales of wavelet coefficients and their modulus. Diagonal matrix approximations are estimated with a wavelet representation of this joint correlation. The resulting diagonals define <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msup><mo></mo><mi>N</mi><mo>)</mo></math></span> moments that are called scattering spectra. A notion of wide-sense self-similarity is defined from the invariance of scattering spectra to scaling, which can be tested numerically on a single realization. We study the accuracy of maximum entropy scattering spectra models for fractional Brownian motions, Hawkes processes, multifractal random walks, as well as financial and turbulent time-series.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"75 ","pages":"Article 101724"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324001015","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-scale non-Gaussian time-series having stationary increments appear in a wide range of applications, particularly in finance and physics. We introduce stochastic models that capture intermittency phenomena such as crises or bursts of activity, time reversal asymmetries, and that can be estimated from a single realization of size N. Variations at multiple scales are separated with a wavelet transform. Non-Gaussian properties appear through dependencies of wavelet coefficients across scales. We define maximum entropy models from the joint correlation across time and scales of wavelet coefficients and their modulus. Diagonal matrix approximations are estimated with a wavelet representation of this joint correlation. The resulting diagonals define moments that are called scattering spectra. A notion of wide-sense self-similarity is defined from the invariance of scattering spectra to scaling, which can be tested numerically on a single realization. We study the accuracy of maximum entropy scattering spectra models for fractional Brownian motions, Hawkes processes, multifractal random walks, as well as financial and turbulent time-series.
具有静态增量的多尺度非高斯时间序列出现在广泛的应用中,尤其是在金融和物理领域。我们引入的随机模型能捕捉间歇现象,如危机或活动爆发、时间反转不对称,并能从大小为 N 的单一实现中进行估算。非高斯特性通过跨尺度小波系数的依赖性显现出来。我们根据小波系数及其模量在时间和尺度上的联合相关性定义最大熵模型。对角矩阵近似值是用这种联合相关性的小波表示来估算的。由此得到的对角矩阵定义了 O(log3N) 矩,称为散射谱。根据散射谱对缩放的不变性,我们定义了广义自相似性的概念,并可在单个实现上对其进行数值测试。我们研究了分数布朗运动、霍克斯过程、多分形随机游走以及金融和湍流时间序列的最大熵散射谱模型的准确性。
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.