Extremizing antiregular graphs by modifying total σ-irregularity

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Martin Knor , Riste Škrekovski , Slobodan Filipovski , Darko Dimitrov
{"title":"Extremizing antiregular graphs by modifying total σ-irregularity","authors":"Martin Knor ,&nbsp;Riste Škrekovski ,&nbsp;Slobodan Filipovski ,&nbsp;Darko Dimitrov","doi":"10.1016/j.amc.2024.129199","DOIUrl":null,"url":null,"abstract":"<div><div>The total <em>σ</em>-irregularity is given by <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> indicates the degree of a vertex <em>z</em> within the graph <em>G</em>. It is known that the graphs maximizing <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-irregularity are split graphs with only a few distinct degrees. Since one might typically expect that graphs with as many distinct degrees as possible achieve maximum irregularity measures, we modify this invariant to <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>|</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, where <span><math><mi>n</mi><mo>=</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>. We study under what conditions the above modification obtains its maximum for antiregular graphs. We consider general graphs, trees, and chemical graphs, and accompany our results with a few problems and conjectures.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"490 ","pages":"Article 129199"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400660X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The total σ-irregularity is given by σt(G)={u,v}V(G)(dG(u)dG(v))2, where dG(z) indicates the degree of a vertex z within the graph G. It is known that the graphs maximizing σt-irregularity are split graphs with only a few distinct degrees. Since one might typically expect that graphs with as many distinct degrees as possible achieve maximum irregularity measures, we modify this invariant to σtf(n)(G)={u,v}V(G)|dG(u)dG(v)|f(n), where n=|V(G)| and f(n)>0. We study under what conditions the above modification obtains its maximum for antiregular graphs. We consider general graphs, trees, and chemical graphs, and accompany our results with a few problems and conjectures.
通过修改总 σ-irregularity 来极化反规则图形
σt(G)=∑{u,v}⊆V(G)(dG(u)-dG(v))2,其中 dG(z) 表示图 G 中顶点 z 的度数。由于人们通常希望具有尽可能多不同度数的图能达到最大不规则度,因此我们将此不变量修改为 σtf(n)(G)=∑{u,v}⊆V(G)|dG(u)-dG(v)|f(n), 其中 n=|V(G)| 且 f(n)>0.我们研究上述修正在什么条件下能获得反规则图的最大值。我们考虑了一般图、树图和化学图,并随结果提出了一些问题和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信