{"title":"Extremizing antiregular graphs by modifying total σ-irregularity","authors":"Martin Knor , Riste Škrekovski , Slobodan Filipovski , Darko Dimitrov","doi":"10.1016/j.amc.2024.129199","DOIUrl":null,"url":null,"abstract":"<div><div>The total <em>σ</em>-irregularity is given by <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> indicates the degree of a vertex <em>z</em> within the graph <em>G</em>. It is known that the graphs maximizing <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-irregularity are split graphs with only a few distinct degrees. Since one might typically expect that graphs with as many distinct degrees as possible achieve maximum irregularity measures, we modify this invariant to <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>|</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, where <span><math><mi>n</mi><mo>=</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>. We study under what conditions the above modification obtains its maximum for antiregular graphs. We consider general graphs, trees, and chemical graphs, and accompany our results with a few problems and conjectures.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"490 ","pages":"Article 129199"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400660X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The total σ-irregularity is given by , where indicates the degree of a vertex z within the graph G. It is known that the graphs maximizing -irregularity are split graphs with only a few distinct degrees. Since one might typically expect that graphs with as many distinct degrees as possible achieve maximum irregularity measures, we modify this invariant to , where and . We study under what conditions the above modification obtains its maximum for antiregular graphs. We consider general graphs, trees, and chemical graphs, and accompany our results with a few problems and conjectures.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.