{"title":"Bounds for the incidence Q-spectral radius of uniform hypergraphs","authors":"Peng-Li Zhang , Xiao-Dong Zhang","doi":"10.1016/j.amc.2024.129201","DOIUrl":null,"url":null,"abstract":"<div><div>The incidence <span><math><mi>Q</mi></math></span>-spectral radius of a <em>k</em>-uniform hypergraph <em>G</em> with <em>n</em> vertices and <em>m</em> edges is defined as the spectral radius of the incidence <span><math><mi>Q</mi></math></span>-tensor <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>R</mi><mi>I</mi><msup><mrow><mi>R</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <em>R</em> is the incidence matrix of <em>G</em>, and <span><math><mi>I</mi></math></span> is an order <em>k</em> dimension <em>m</em> identity tensor. Since the <span><math><mo>(</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is involved in the number of edges in <em>G</em> containing vertices <span><math><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> simultaneously, more structural properties of <em>G</em> from the entry of <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> than other commonly used tensors associated with hypergraphs may be discovered. In this paper, we present several bounds on the incidence <span><math><mi>Q</mi></math></span>-spectral radius of <em>G</em> in terms of degree sequences, which are better than some known results in some cases.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"490 ","pages":"Article 129201"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006623","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence -spectral radius of a k-uniform hypergraph G with n vertices and m edges is defined as the spectral radius of the incidence -tensor , where R is the incidence matrix of G, and is an order k dimension m identity tensor. Since the -entry of is involved in the number of edges in G containing vertices simultaneously, more structural properties of G from the entry of than other commonly used tensors associated with hypergraphs may be discovered. In this paper, we present several bounds on the incidence -spectral radius of G in terms of degree sequences, which are better than some known results in some cases.
具有 n 个顶点和 m 条边的 k-Uniform 超图 G 的入射 Q 谱半径定义为入射 Q 张量 Q⁎:=RIRT 的谱半径,其中 R 是 G 的入射矩阵,I 是一个 k 维 m 次方的标识张量。由于 Q⁎的 (i1,i2,...,ik) 项涉及到 G 中同时包含顶点 i1,i2,...,ik 的边的数量,因此从 Q⁎ 项中可以发现 G 的结构属性比其他与超图相关的常用张量更多。在本文中,我们以度序列为单位提出了 G 的入射 Q 谱半径的几个约束,这些约束在某些情况下优于一些已知结果。
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.