Bounds for the incidence Q-spectral radius of uniform hypergraphs

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Peng-Li Zhang , Xiao-Dong Zhang
{"title":"Bounds for the incidence Q-spectral radius of uniform hypergraphs","authors":"Peng-Li Zhang ,&nbsp;Xiao-Dong Zhang","doi":"10.1016/j.amc.2024.129201","DOIUrl":null,"url":null,"abstract":"<div><div>The incidence <span><math><mi>Q</mi></math></span>-spectral radius of a <em>k</em>-uniform hypergraph <em>G</em> with <em>n</em> vertices and <em>m</em> edges is defined as the spectral radius of the incidence <span><math><mi>Q</mi></math></span>-tensor <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>R</mi><mi>I</mi><msup><mrow><mi>R</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <em>R</em> is the incidence matrix of <em>G</em>, and <span><math><mi>I</mi></math></span> is an order <em>k</em> dimension <em>m</em> identity tensor. Since the <span><math><mo>(</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>-entry of <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is involved in the number of edges in <em>G</em> containing vertices <span><math><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> simultaneously, more structural properties of <em>G</em> from the entry of <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> than other commonly used tensors associated with hypergraphs may be discovered. In this paper, we present several bounds on the incidence <span><math><mi>Q</mi></math></span>-spectral radius of <em>G</em> in terms of degree sequences, which are better than some known results in some cases.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"490 ","pages":"Article 129201"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006623","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence Q-spectral radius of a k-uniform hypergraph G with n vertices and m edges is defined as the spectral radius of the incidence Q-tensor Q:=RIRT, where R is the incidence matrix of G, and I is an order k dimension m identity tensor. Since the (i1,i2,,ik)-entry of Q is involved in the number of edges in G containing vertices i1,i2,,ik simultaneously, more structural properties of G from the entry of Q than other commonly used tensors associated with hypergraphs may be discovered. In this paper, we present several bounds on the incidence Q-spectral radius of G in terms of degree sequences, which are better than some known results in some cases.
均匀超图的入射[公式省略]-谱半径的边界
具有 n 个顶点和 m 条边的 k-Uniform 超图 G 的入射 Q 谱半径定义为入射 Q 张量 Q⁎:=RIRT 的谱半径,其中 R 是 G 的入射矩阵,I 是一个 k 维 m 次方的标识张量。由于 Q⁎的 (i1,i2,...,ik) 项涉及到 G 中同时包含顶点 i1,i2,...,ik 的边的数量,因此从 Q⁎ 项中可以发现 G 的结构属性比其他与超图相关的常用张量更多。在本文中,我们以度序列为单位提出了 G 的入射 Q 谱半径的几个约束,这些约束在某些情况下优于一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信