{"title":"A Database of Stress-Strain Properties Auto-generated from the Scientific Literature using ChemDataExtractor.","authors":"Pankaj Kumar, Saurabh Kabra, Jacqueline M Cole","doi":"10.1038/s41597-024-03979-6","DOIUrl":null,"url":null,"abstract":"<p><p>There has been an ongoing need for information-rich databases in the mechanical-engineering domain to aid in data-driven materials science. To address the lack of suitable property databases, this study employs the latest version of the chemistry-aware natural-language-processing (NLP) toolkit, ChemDataExtractor, to automatically curate a comprehensive materials database of key stress-strain properties. The database contains information about materials and their cognate properties: ultimate tensile strength, yield strength, fracture strength, Young's modulus, and ductility values. 720,308 data records were extracted from the scientific literature and organized into machine-readable databases formats. The extracted data have an overall precision, recall and F-score of 82.03%, 92.13% and 86.79%, respectively. The resulting database has been made publicly available, aiming to facilitate data-driven research and accelerate advancements within the mechanical-engineering domain.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1273"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03979-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There has been an ongoing need for information-rich databases in the mechanical-engineering domain to aid in data-driven materials science. To address the lack of suitable property databases, this study employs the latest version of the chemistry-aware natural-language-processing (NLP) toolkit, ChemDataExtractor, to automatically curate a comprehensive materials database of key stress-strain properties. The database contains information about materials and their cognate properties: ultimate tensile strength, yield strength, fracture strength, Young's modulus, and ductility values. 720,308 data records were extracted from the scientific literature and organized into machine-readable databases formats. The extracted data have an overall precision, recall and F-score of 82.03%, 92.13% and 86.79%, respectively. The resulting database has been made publicly available, aiming to facilitate data-driven research and accelerate advancements within the mechanical-engineering domain.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.