Therapeutic effects of blue mussel-derived peptides (PIISVYWK and FSVVPSPK) on non-alcoholic fatty liver disease by modulating lipid metabolism and inflammation in high-fat diet-induced mice
{"title":"Therapeutic effects of blue mussel-derived peptides (PIISVYWK and FSVVPSPK) on non-alcoholic fatty liver disease by modulating lipid metabolism and inflammation in high-fat diet-induced mice","authors":"Indyaswan Tegar Suryaningtyas , Jae-Young Je","doi":"10.1016/j.tice.2024.102630","DOIUrl":null,"url":null,"abstract":"<div><div>Non-alcoholic fatty liver disease (NAFLD) is a progressive condition, advancing from simple hepatic lipid accumulation to inflammation, fibrosis, and increased risk of mortality. This study explores the therapeutic efficacy of bioactive peptides PIISVYWK (P1) and FSVVPSPK (P2) in ameliorating NAFLD in both oleic acid-treated HepG2 cells and high-fat diet (HFD)-induced mice. Our findings demonstrated that P1 and P2 significantly reduced hepatic fat deposition, enhanced lipolysis by promoting the release of free glycerol and free fatty acids, and suppressed key <em>de novo</em> lipogenesis-related proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1), and fatty acid synthase (FAS). Furthermore, both peptides stimulated fatty acid oxidation via phosphorylation of AMP-activated protein kinase (AMPK) and hormone-sensitive lipase (HSL). Notably, reductions in body and liver weight, along with improved cholesterol profiles and liver function markers (alanine transaminase and aspartate aminotransferase), were observed in HFD mice. Additionally, P1 and P2 significantly attenuated the production of pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in both <em>in vitro</em> and <em>in vivo</em> models. Collectively, these results highlight the potent therapeutic potential of P1 and P2 in mitigating NAFLD progression, offering a promising intervention for this increasingly prevalent metabolic disorder.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"91 ","pages":"Article 102630"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624003318","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition, advancing from simple hepatic lipid accumulation to inflammation, fibrosis, and increased risk of mortality. This study explores the therapeutic efficacy of bioactive peptides PIISVYWK (P1) and FSVVPSPK (P2) in ameliorating NAFLD in both oleic acid-treated HepG2 cells and high-fat diet (HFD)-induced mice. Our findings demonstrated that P1 and P2 significantly reduced hepatic fat deposition, enhanced lipolysis by promoting the release of free glycerol and free fatty acids, and suppressed key de novo lipogenesis-related proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1), and fatty acid synthase (FAS). Furthermore, both peptides stimulated fatty acid oxidation via phosphorylation of AMP-activated protein kinase (AMPK) and hormone-sensitive lipase (HSL). Notably, reductions in body and liver weight, along with improved cholesterol profiles and liver function markers (alanine transaminase and aspartate aminotransferase), were observed in HFD mice. Additionally, P1 and P2 significantly attenuated the production of pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in both in vitro and in vivo models. Collectively, these results highlight the potent therapeutic potential of P1 and P2 in mitigating NAFLD progression, offering a promising intervention for this increasingly prevalent metabolic disorder.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.