{"title":"Efficient analysis of toxicity and mechanisms of Acetyl tributyl citrate on aging with network toxicology and molecular docking strategy","authors":"Qiu Zheng , Qingping Peng , Jianlin Shen , Huan Liu","doi":"10.1016/j.tox.2024.154009","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to apply a network toxicology strategy to investigate the potential toxicity and the molecular mechanisms underlying the aging-induced toxicity of acetyl tributyl citrate (ATBC). Utilizing the ChEMBL, SwissTargetPrediction, and CellAge databases, we identified 32 potential targets associated with ATBC exposure and aging. Subsequent optimization by STRING and Cytoscape software highlighted 11 core targets, including EGFR, STAT3, and BCL-2. A comprehensive analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that core targets of ATBC-induced senescence were predominantly enriched in pathways related to the positive regulation of cell proliferation, telomere shortening, cancer, and cellular senescence. Among these pathways, we selected four core genes of the cellular senescence pathway (MAPK14, CDK2, MDM2, and PIK3CA) for molecular docking with Autodock, which confirmed the high binding affinity between ATBC and the core targets. In conclusion, these findings indicate that ATBC may contribute to human aging by modulating the positive regulation of cell proliferation, the telomere shortening pathway, the cancer-related pathway, and the cellular senescence pathway. This study establishes a theoretical basis for exploring the molecular mechanisms of human aging induced by ATBC, alongside a systematic and effective framework for researchers to assess the potential toxicity of various chemical products.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"510 ","pages":"Article 154009"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24002907","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to apply a network toxicology strategy to investigate the potential toxicity and the molecular mechanisms underlying the aging-induced toxicity of acetyl tributyl citrate (ATBC). Utilizing the ChEMBL, SwissTargetPrediction, and CellAge databases, we identified 32 potential targets associated with ATBC exposure and aging. Subsequent optimization by STRING and Cytoscape software highlighted 11 core targets, including EGFR, STAT3, and BCL-2. A comprehensive analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that core targets of ATBC-induced senescence were predominantly enriched in pathways related to the positive regulation of cell proliferation, telomere shortening, cancer, and cellular senescence. Among these pathways, we selected four core genes of the cellular senescence pathway (MAPK14, CDK2, MDM2, and PIK3CA) for molecular docking with Autodock, which confirmed the high binding affinity between ATBC and the core targets. In conclusion, these findings indicate that ATBC may contribute to human aging by modulating the positive regulation of cell proliferation, the telomere shortening pathway, the cancer-related pathway, and the cellular senescence pathway. This study establishes a theoretical basis for exploring the molecular mechanisms of human aging induced by ATBC, alongside a systematic and effective framework for researchers to assess the potential toxicity of various chemical products.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.